Что означает количество мегапикселей и разрешение | НПО «Инфотех»
Что означает количество мегапикселей и разрешение
Разрешающая способность камеры видеонаблюдения определяется количеством пикселей ее матрицы, а для аналоговых видеокамер она указывается в ТВЛ (телевизионных линиях). Эта величина определяется с помощью значения чередующихся черно — белых полос, сколько видеокамера может воспроизвести по вертикали или горизонтали.
Условно АНАЛОГОВЫЕ КАМЕРЫ можно подразделить на устройства стандартного (380-420 ТВЛ, что соответствует примерно 500 пикселям по горизонтали) и высокого (560-600 ТВЛ — около 750 пикселей) разрешения. Сейчас производятся видеокамеры с разрешением порядка 1000 ТВЛ.
Разрешение IP КАМЕР определяется как произведение количества пикселей по горизонтали и вертикали матрицы. Измеряется оно в мегапикселях.
Мегапиксель (мегапиксел, Мп, англ. megapixel) — один миллион (1 000 000) пикселей, формирующих изображение.
Что такое Мегапиксели?
Мегапиксели — не самое главное в снимке или фотоаппарате. Важным является то, как формируется каждый пиксель. В случае цифрового фотоаппарата физический размер матрицы играет ключевую роль: чем он меньше при одинаковом количестве мегапикселей, тем более «шумным» будет снимок.
Что такое Разрешение?
Разреше́ние — величина, определяющая количество точек (элементов растрового изображения) на единицу площади (или единицу длины). Термин обычно применяется к изображениям в цифровой форме, хотя его можно применить, например, для описания уровня грануляции фотоплёнки, фотобумаги или иного физического носителя. Более высокое разрешение (больше элементов) типично обеспечивает более точные представления оригинала.
Кроме того, в области любительских фотоаппаратов постоянно растущее разрешение не вызывает рост и без того малого физического размера светочувствительной матрицы. Это приводит к сильному повышению уровня шумов на снимках. Программное обеспечение «мыльниц» подавляет возникшие шумы, что, в свою очередь, приводит к «замыленности» снимка. Во время просмотра такого снимка в масштабе 100 % качество снимка очень невысокое. Нечёткость и «замыленность» несколько ослабляются при уменьшении масштаба просмотра (или печати). При этом теряется необходимость в большом количестве мегапикселей. К тому же разные матрицы, построенные по одному и тому же принципу, обладают различными недостатками. Также современные сканеры при максимальном разрешении по разрешающей способности сильно превосходят пару «плёнка-объектив» и отсканированные при высоком разрешении кадры не будут иметь ожидаемого количества деталей.
Таким образом, количество мегапикселей не является главным показателем качества аппарата.
Печать фотографий
От количества мегапикселей зависит размер и резрешение фотоснимков.
Если пренебрегать размером фотографий и печатать маленькие фотографии на большой бумаге, то изображение будет получаться менее резким и на контрастных границах будет заметна ступенчатость.
При печати до формата 15×20 для безупречной резкости требуется качество печати 300 ppi (для снимка 10×15 (4×6 дюймов) это 1200×1800 точек). На формате А4 уже не требуется такого разрешения, так как снимок будет рассматриваться с бо́льшего расстояния.
Какое имеет отношение разрешения, для фильмов и кинематографа (информация для любителей снимать видео на камеры Hikvision)
В отличие от обозначения разрешение в телевидении, отталкивающегося от количества строк и, соответственно, количества элементов изображения по вертикали, в кинематографе разрешающая способность отсчитывается по длинной стороне кадра.
Такой принцип выбран из-за того, что в цифровом кино, в отличие от телевидения высокой четкости, существуют различные стандарты соотношения сторон экрана. В этом случае удобно отталкиваться от горизонтального разрешения, которое остается постоянным, в то время, как вертикальное изменяется в соответствии с высотой кадра. Разрешению 4K соответствует несколько различных размеров изображения в пикселях.
Учёные создали цифровую фотокамеру с разрешением 3200 мегапикселей. Ей будут снимать звёздное небо
Учёные Национальной ускорительной лаборатории SLAC Министерства энергетики США получили с помощью самой большой в мире цифровой фотокамеры первые 3200-мегапиксельньные фотографии. Об этом сообщается в официальном блоге лаборатории.
В будущем камеру установят на обзорный телескоп строящейся в Чили Обсерватории имени Веры Рубин. После установки камера будет снимать панорамные изображения всего южного полушария неба в течение десяти лет. Полученные данные лягут в основу самого большого астрономического атласа в истории — LSST (Legacy Survey of Space and Time).
Изображения, полученные с помощью самой большой цифровой камеры SLAC настолько велики, что для их отображения в полном размере потребуется 378 телевизоров сверхвысокой чёткости и поддержкой 4K. Разрешение камеры позволяет увидеть мячик для гольфа с расстояния 25 километров. Разработчики отмечают, что разработанная в SLAC камера, сборка которой была завершена в январе этого года, поднимет детальность астрофизических наблюдений на беспрецедентный уровень. Она способна обнаружить объекты в 100 миллионов раз тусклее, чем способен определить человеческий глаз. Именно поэтому одними из её основных задач станут поиск и исследование тёмной энергии и тёмной материи.
Фокальная плоскость камеры, по словам учёных, чем-то похожа на матрицу обычной цифровой камеры, только сложнее. С помощью датчиков она улавливает свет, излучаемый или отражённый объектом, и преобразует его в электрические сигналы, которые используются для создания цифрового изображения.
Поверхность камеры содержит 189 отдельных ПЗС-устройств (CCD-матриц), каждое из которых обеспечивает разрешение 16 мегапикселей — примерно столько же, сколько сенсоры изображений современных цифровых камер. Наборы из девяти ПЗС-матриц и их вспомогательной электроники собраны в квадратные блоки, названные «плотами». Каждый из этих плотов стоимостью в $3 млн. в свою очередь собран на сетке, удерживающей их вместе.
Новая камера уникальна во всём. Помимо гигантского разрешения отдельного внимания заслуживает размер пикселей на матрице. Размер каждого из них составляет всего 10 микрон в ширину. При этом сама фокальная плоскость камеры чрезвычайно ровная — отклонения от идеальной плоскости не превышают одной десятой толщины человеческого волоса. Это позволяет камере делать чёткие изображения с очень высоким разрешением.
Датчики камеры могут работать только при минус ста градусах Цельсия, поэтому вся фокальная плоскость камеры размещена внутри криостата. В течение ближайших месяцев специалисты вставят криостат с фокальной плоскостью в корпус камеры и добавят линзы, включая самый большой в мире оптический объектив, затвор и систему замены фильтров для изучения ночного неба в разных цветах.
С примерами получаемых камерой изображений можно ознакомиться в блоге Национальной ускорительной лаборатории SLAC.
Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Что такое стандарт разрешения 4К
Нобукэй Онай, руководитель группы конструктивного дизайна: Мы провели очень много тестов пока не нашли ту конструкцию, которую вы сейчас видите. Кажется, что в модели FDR-AX100 объектив продолжается до жидкокристаллического монитора, однако на самом деле до области аккумулятора объектива нет. В видеокамерах предыдущего поколения с задней стороны объектива устанавливалась основная плата, однако в такой модели как FDR-AX100 это бы чрезмерно удлинило корпус.
Разместить платы вокруг объектива оказалось задачей, схожей с решением трехмерного пазла. Если разместить плату с боковой стороны от объектива, то на корпусе пришлось бы сделать выступ, и одной рукой держать такую камеру было бы нелегко, кроме того, это бы ухудшило баланс веса. В результате основную плату мы разместили под объективом, а остальные платы по внешнему периметру объектива, что позволило добиться компактности и легкости в обращении.
Такэси Хатакэяма, руководитель группы оптического дизайна: Объектив данной модели и по форме, и по размеру очень похож на фонарик, поэтому мы так его и прозвали «наш фонарик». (смеется). Создается такое впечатление, что большая часть внутреннего пространства занята объективом.
Такэси Хатакэяма, руководитель группы оптического дизайна: Да, так оно и есть, почти все пространство занял объектив (смеется). Однако если разместить плату под объективом, то получается, что теперь объектив становится объектом непосредственного теплового излучения платы. Поэтому мы меняли местоположение других плат, придумывали каналы для отвода тепла, чтобы не нагревать объектив. Раз за разом мы проводили тесты по симуляции распределения тепла и испытания опытного образца, и все это на фоне работы по уменьшению общего размера камеры. В результате мы нашли оптимальное местоположение плат, схему и материал для отвода тепла, позволяющий делать это наиболее эффективно.
Например, с правой стороны модели FDR-AX100 на уровне ладони на корпусе есть округлый выступ, но внутри там не полость, а электронная плата.
Такао Канадзава (руководитель проекта): В таких больших проектах как этот есть такой момент, когда одна команда не может начать свою часть работы, пока другая команда не закончит свою. Однако в случае с FDR-AX100 все команды разработчиков, включая конструктивный дизайн и линзы, четко и ясно говорили «нам этого не сделать» о том, что сделать было невозможно, а то, что они считали «возможным», они непременно воплощали в жизнь. Когда сотрудники четко понимают, что они могут сделать, а что нет, работа может плавно и параллельно проходить в разных командах. Результатом этого стало создание компактной камеры FDR-AX100, которая превзошла все наши ожидания.
Как выбрать зеркальный фотоаппарат 👌
Матрица
Матрица — это плата со светочувствительными микродатчиками (пикселями), улавливающими световой поток и превращающими его в цифровое изображение. Её разрешение зависит от физического размера и количества мегапикселей.
Кроп-фактор
Размер матрицы указывается в дюймах, миллиметрах и виде коэффициента, называемого кроп-фактором. Он обозначает, во сколько раз конкретная матрица меньше полнокадровой. Полнокадровыми являются Full-Frame-матрицы 35 миллиметров, которые соответствуют классической пленке: этот кроп-фактор равен единице. Ценность камер с Full-Frame-матрицей заключается в том, что с ее помощью можно снимать в условиях меньшей освещенности, сохраняя при этом передачу любых оттенков. Но стоимость оборудования с такой матрицей высока, а эффект может оценить только профессионал. Сейчас камеры с кроп-фактором 1,5 снимают не хуже полнокадровых. Поэтому для любительского и полупрофессионального использования вполне достаточно кроп-фактора со значениями от 1,5 до 1,7.
Мегапиксели
Мегапиксель (Мп) — миллион датчиков-пикселей. Количество пикселей определяет разрешение матрицы, но больше — не значит лучше. Большое число пикселей необходимо только для широкоформатной коммерческой фотографии, но ничего не даст для любительских сников: экраны мобильных девайсов, компьютеров и фотобумага, с которых демонстрируются снимки, просто не способны передать красоту такой детализации.
Кроме того, количество пикселей должно соответствовать размеру матрицы: чем больше пикселей, тем больше должен быть размер ее. Несоответствие этих показателей приводит к потере преимуществ – излишняя детальность на маленькой матрице превращается в «шумы» на снимках.
Большая диагональ матрицы позволяет лучше улавливать свет, за счет чего уровень шумов на снимке снижается. Full-Frame матрицы обеспечат максимальную детализацию при минимальном «шуме» даже в сложных условиях съемки. Если фотоаппарат оснащен такой матрицей, можно смело выбирать высокое разрешение от 25 Мп.
Для любителейДля любителей
Если вы планируете снимать семью, друзей и встречи с близкими, приобретайте модель с кроп-фактором 1,5 до 1,7 и разрешением до 25 Мп
Для тех, кто хочет стать фотографом
Если вы уже имеете начальные навыки и хотите перевести хобби в профессию, выбирайте фотоаппарат с Full-Frame-матрицей и разрешением 26 Мп и выше.
ISO
Это светочувствительность матрицы. Он указывается как ISO 100, 200, 400 и т.д. Больший коэффициент позволяет снимать практически в темноте. Это может понадобиться фоторепортеру, но практически бесполезно в рядовых случаях. Необоснованное увеличение чувствительности дает сильные «шумы» на кадрах.
Выдержка
Это время, в течение которого свет попадает на матрицу после нажатия кнопки затвора. Выдержка обозначается в долях секунды: минимальное значение для профессиональных камер 8000, то есть 1/8000 с, для любительских – 4000. Такие значения позволяют запечатлеть мельчайшие действия, практически недоступные человеческому глазу. Высокие же значения от 1/60 создают фотографии «видимого движения». Особенно эффектными получаются снимки рек и водопадов, а так же ночного автомобильного движения в городе.
Оптика
Любительские зеркальные фотокамеры в комплекте с корпусом, как правило, имеют один или два штатных Kit-объективов с универсальными характеристиками. А вот профессиональные модели зачастую поставляются без какой-либо оптики.
Фокусное расстояние
Фокус — это точка схождения лучей, проходящих через линзы, а фокусное расстояние — это расстояние от фокуса до комплекта линз объектива. Эта характеристика показывает, насколько приближены будут снимаемые объекты, и определяет, как много их попадет в кадр. Чем меньше значение расстояния – тем бо́льшую панораму охватывает объектив.
Для съемки пейзажей нужно расстояние от 24 мм, а для портретов – от 50 мм. Именно это значение наиболее близко к тому, как воспринимает мир человеческий глаз. Объективы с расстоянием меньше 21 мм называют широкоугольными или «рыбий глаз». Китовые варианты, чаще всего входящие в комплект, имеют показатели 18-55 мм, но встречаются и другие значения.
Также существуют «фиксы» − объективы с фиксированным фокусным расстоянием. Используя такую оптику, придется подходить и отходить от объекта съемки, чтобы поменять композицию кадра. Но именно фиксы показывают лучшую резкость и качество картинки.
Чем меньше значение фокусного расстояния – тем бо́льшую панораму охватывает объектив.
Для всей семьиДля всей семьи
Для семейной съемки праздников или выездов на пикник достаточно объектива с фокусным расстоянием в диапазоне 30–85 мм.
Для пейзажей
Объектив с фокусным расстоянием от 24 мм или широкоугольный «рыбий глаз» менее 21 мм. Для получения более интересных пейзажей с эффектом «накладывания» выбирайте телеобъективы с расстоянием от 85 мм.
Диафрагма
Управляет глубиной резкости и контролирует количество света, которое попадет на матрицу, тем самым настраивая правильную экспозицию снимка. Ширина диаграммы, то есть размеры засвета между ее лепестками, соответствует значениям: f/1.4, f/1.8, f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, f/22. Большее число обозначает большее сжатие диафрагмы. Открытый доступ лучей на малых значениях делает изображение более объемным, сжатие лепестков позволяет разглядеть объекты более детально, но фото получатся плоскими.
С помощью значений диафрагмы можно играть с художественностью снимков, например, создавать портреты или макроснимки с эффектом «боке»: акцент остается на объекте съемки, а остальной фон красиво размывается. Чтобы добиться такого эффекта, значение диафрагмы должно быть не выше f/4.
Беспрепятственное попадание светового потока на матрицу при малых значениях диафрагмы делает изображение освещенным, но плоским. При этом именно открытая диафрагма создает любимый многими эффект «боке» при портретной съемке.
Для съемки групповых портретовДля съемки групповых портретов
Если в фокусе должна быть группа людей, выбирайте показатели диафрагмы не ниже f/8.
Для глубины и детализации
Для глубоких, величественных пейзажей, а также для детальных снимков архитектуры – диафрагма не меньше f/10.
Для художественных портретов
Портреты, снятые при неярком свете, наиболее выразительны. В таких условиях самыми выгодными станут значения диафрагмы от f/1.8 до f/4. Так вы подчеркнете уникальность личности, создав настоящий шедевр.
Байонет
Тип крепления объектива к фотоаппарату. По типу байонета выбирается оптика. Есть возможность использования переходников, но это хлопотно и дорого. При выборе фотоаппарата тип байонета не имеет большого значения, но если в перспективе вы планируете меняться оптикой со знакомыми или арендовать объективы, выбирайте аналогичную модель.
Стабилизатор изображения
Характеристика, ценная для работающих с длиннофокусными объективами и любителей. При оптической стабилизации колебания гасятся оптикой, при цифровой — матрицей. Оптическая стабилизация более эффективна, а цифровая – дешевле. Однако никакая стабилизация не может в полной мере заменить штатив. Поэтому, если вы планируете съемки с телеобъективами или ночные фоторейды, без него не обойтись.
Дополнительные возможности
Поворотный и наклонный экраны позволяют настраивать угол просмотра при съемке сверху, снизу или в другой неудобной позе, а также делать селфи. Сенсорные экраны позволяют оперировать настройками прямо на экране.
Wi-Fi-передатчик обеспечит синхронизацию фотоаппарата с ноубуком, компьютером, планшетом и другим мобильным устройством, ускоряя процесс передачи снимков. С помощью этой функции вы сможете делиться снимками с места событий или незамедлительно показывать результат во время фотосессии в фотостудии.
Функция видеозаписи очень пригодится, если время от времени необходимо записывать короткие видеоролики в повышенном качестве. При наличии формата Full-HD качество записи не будет уступать видеокамере.
Как выбрать телефонную камеру высокого качества?
Важнее, чем мегапиксели: что на самом деле определяет высокое качество цифровых снимков?
Результаты опроса владельцев смартфонов, который был проведен в 2014 году, показали: на первое место по степени важности пользователи ставят такую функцию смартфона, как фотосъемка. Именно по этой причине телефонные производители, представляя свои новые модели, стали заострять внимание на характеристиках камеры.
Жесткая конкуренция требует от них постоянного выхода на рынок с новой продукцией, которая будет лучше, чем у других. Однако обычным потребителям в условиях такой гонки всё труднее разобраться, благодаря каким параметрам модель одного производителя опережает модели других.
Довольно быстро разработчики телефонной продукции придумали простой трюк – они стали бесконечно увеличивать один из параметров камеры, пытаясь убедить потребителей в том, что это и есть главный критерий ее высокого качества. Таким параметром стало количество мегапикселей, и многие люди, выбирая телефон с камерой, теперь руководствуются именно этой характеристикой, хотя, если рассуждать объективно, это далеко не самый важный показатель.
Да и качество снимков, сделанных телефоном, зачастую хромает, даже несмотря на огромное число мегапикселей. Сколько же их нужно на самом деле и на что в первую очередь надо обращать внимание при выборе телефонной камеры?
Однако прежде, чем погрузиться в тематические глубины, попытаемся разобраться в азах – что же это такое, загадочный мегапиксель?
Что такое мегапиксель?Пиксель (pixel – Picture Element) – это строительный блок цифрового изображения, которое состоит из множества крошечных цветных квадратиков, расположенных вертикально и горизонтально. Современные камеры способны делать фото, состоящие из миллионов пикселей, или мегапикселей. Например, если в снимке по горизонтали уложились 3456 пикселей, а по вертикали – 2304, то в целом он будет состоять из 7 962 624 пикселей, т. е. речь идет о 8-мегапиксельном фото.
Плотность пикселей (pixel density) – количество пикселей на единице площади изображения. Измеряется в пикселях на квадратный дюйм (ppi) или на сантиметр (PPCM). В цифровой печати обычно говорят о количестве точек на квадратный дюйм (DPI). Основное правило гласит: чем больше пикселей или точек приходится на одну единицу измерения, тем будет резче и детальнее изображение.
Казалось бы, из вышесказанного можно сделать однозначный вывод: чем больше количество и плотность пикселей, тем качественнее снимок. Однако, как и в жизни, здесь не всё так просто.
Миф о мегапикселяхДесятилетиями производители электроники внушали потребителям: чем больше пикселей уместится на снимках, тем лучше камера. И до определенного момента так и было.
Первые цифровые камеры, появившиеся в продаже на рубеже нового тысячелетия, делали только 1-мегапиксельные фото. В те времена снимки было принято проявлять и печатать на фотобумаге, и выглядели они далеко не лучшим образом: сказывалось низкое разрешение цифровой камеры. Одна из причин слабого качества заключалась в недостаточном количестве пикселей, которые приходилось растягивать при переносе изображения на фотобумагу.
С этим недостатком решили бороться, начав пиксельную гонку. В продаже стали появляться более совершенные камеры, которые позволили резко улучшить качество цифровых фотографий. Снимок на бумаге 10 х 15 см, сделанный 3-мегапиксельной камерой выглядел действительно лучше, чем снятый с помощью 0,9-мегапиксельного аппарата.
Технологии продолжали развиваться, однако наступил момент, когда цифровые камеры достигли своего потолка – физиологического и технологического. Оказалось, что человеческий глаз не в состоянии видеть отдельные пиксели при достаточно высоком уровне их плотности.
Другим сдерживающим фактором стала разрешающая способность телефонных экранов, не позволявшая показать всё великолепие сделанных снимков. Иными словами, при достижении определенного количественного уровня уже нельзя было визуально отличить, на каком снимке больше пикселей, а на каком – меньше.
Таким образом, принцип: чем больше мегапикселей, тем лучше изображение – перестал работать. Но, несмотря на изменившиеся обстоятельства, потребители по-прежнему при выборе новой камеры или смартфона руководствуются этим принципом, а производители электроники не спешат развеивать их ложные представления. Да и с какой стати им это делать?
Простым пользователям понятна такая единица измерения, как мегапиксель. Так почему бы не акцентировать на ней внимание, чтобы легче навязать товар покупателям? Однако мегапиксели подобны калориям, которые необходимы для нормальной жизнедеятельности организма, но, оказавшись в избытке, причинят ему только вред.
Когда пикселей много, а проку нетЧем больше пикселей содержит изображение, тем объемнее файл. И это может стать проблемой для устройств с недостаточным объемом памяти, например, для смартфонов, у которых нет гнезда для карты памяти. А если учесть, что каждое срабатывание телефонной камеры съедает 5 – 10 Мбайт, то весь объем памяти устройства будет исчерпан довольно быстро.
Загрузка так называемых «тяжелых» фото в социальные сети тоже забирает немало объема и времени. К тому же некоторые социальные каналы устанавливают ограничения на объем загружаемого контента и/или применяют компрессию, что приводит к ухудшению качества изображения. В итоге от большого количества пикселей не будет никакого проку.
Когда много пикселей только на пользуБольшое количество пикселей, безусловно, оправдано, когда требуется распечатать фото на носителе крупного формата или выделить фрагмент, увеличив масштаб изображения без потери качества. В данном случае много пикселей дают больше возможностей для маневра.
Сколько же мегапикселей надо?Итак, мы разобрались, что обе крайности – очень мало и очень много мегапикселей – это плохо. В первом случае снимок для просмотра в адекватном качестве приходится сокращать в размерах, во втором – излишне увеличивается объем файла. Что ж, попробуем найти золотую середину.
По состоянию на апрель 2020 года, преобладающая часть интернет-пользователей просматривала контент на стационарных компьютерах, мониторы которых имели разрешение 1366 х 768 пикселей или высокое разрешение HD. Следующими по популярности были мониторы с разрешением Full HD (1920 х 1080 пикселей), способные отобразить на экране 2073600 пикселей (приблизительно 2 мегапикселя). У HD-мониторов этот показатель составляет 1049088 пикселей (приблизительно 1 мегапиксель).
Качество отображаемого на экране изображения определяется разрешением монитора, поэтому снимок со сверхвысокой плотностью пикселей может выглядеть на экране как малопиксельный. Кстати, 3-мегапиксельная картинка на экране 96 PPI смотрится вполне адекватно. А вот для того, чтобы выглядеть достойно на 4К-экране, изображение должно уже содержать никак не меньше 8 миллионов пикселей.
Всё вышесказанное, однако, еще не означает, что любая камера с разрешением более 8 мегапикселей заведомо хороша. Это не так. Как нельзя приготовить гастрономический шедевр только из одного ингредиента, так невозможно сделать отличное фото лишь благодаря уйме мегапикселей.
Что действительно важно?Сенсорная матрицаФотография – это искусство рисования светом. Не будет света – не будет и снимка. Поэтому основной элемент любой камеры – это узел, преобразовывающий свет в изображение, и таким узлом является сенсорная матрица. Она преобразует поступающий через объектив световой поток в сигнал, который, в свою очередь, потом трансформируется в изображение. Чем крупнее и качественнее матрица, тем больше света она способна преобразовать и тем лучше будет фото.
Именно по этой причине снимок, сделанный зеркальной камерой, в общем случае будет лучше, чем снятый «мыльницей» с микроскопической матрицей или камерой телефона. Поэтому, выбирая телефонную камеру, в первую очередь следует обращать внимание на размер ее матрицы. Чем больше матрица, тем качественнее будут снимки, сделанные при любом освещении – хорошем или плохом.
ПроцессорПроцессор или графический чип (этими элементами в основном оснащены флагманские модели) трансформирует сигнал, поступающий из сенсорной матрицы, в видимое изображение. Чем производительнее чип, тем быстрее обрабатывается изображение и тем быстрее можно будет сделать следующий кадр.
ДиафрагмаВ объективе каждой камеры есть отверстие, через которое свет попадает на матрицу. У зеркальных камер и некоторых «мыльниц» подороже диафрагма регулируемая, т.е. позволяет регулировать световой поток.
С помощью такой регулируемой диафрагмы можно играть глубиной резкости и выдержкой. От глубины резкости зависит, какие объекты будут в фокусе, какие – нет. А от выдержки – интервала времени, когда матрица открыта для света, – зависит качество изображения движущихся объектов. Чем больше диафрагма, тем больше света попадает на матрицу и тем лучше будут результаты съемки при плохом освещении.
К сожалению, мне еще не приходилось слышать о смартфонах с регулируемой диафрагмой. И фанаты телефонной съемки вынуждены мириться с теми параметрами диафрагмы, которые изначально устанавливают производители. Впрочем, всё не так страшно, если диаметр объектива достаточно велик.
Характеристики диафрагмы обозначаются буквой F с дробью: F/16, F/8, F/2 и т.д. Чем меньше цифровой знаменатель, тем крупнее отверстие объектива и больше света доходит до матрицы. И наоборот. Короче, чем меньше цифра, тем лучше.
Сегодня в основном продаются телефоны с камерами, у которых диафрагма около F/2, у флагманских моделей – F/1.9 и даже F/1.7. Такие камеры уже позволяют делать фото приемлемого уровня. Однако, чтобы извлечь максимальную пользу из хороших характеристик диафрагмы, устройство также должно быть оснащено качественным стабилизатором изображения.
Стабилизатор изображенияЗадача стабилизатора изображения заключается в устранении нежелательного эффекта «замыливания» кадра, когда дрожат руки, и в общей стабилизации процесс съемки. Существуют два вида стабилизаторов – цифровые и оптические. Цифровые устраняют последствия дрожания рук с помощью специальных программ, хотя и не всегда успешно. В оптических за стабильность отвечают крошечные гироскопы, которые удерживают «пляшущий» объектив на месте. Правда, это достаточно сложный вариант и используется только во флагманских моделях.
ЗумЗум, или увеличение, в камерах тоже бывает двух видов – оптический и цифровой. Оптическое увеличение достигается за счет перемещения объектива камеры, цифровое – путем обработки изображения с помощью специального алгоритма. В смартфонах чаще всего используется последний вариант, который неизбежно приводит к серьезному ухудшению качества изображения. Поэтому телефон с оптическим зумом, который мало влияет на конечный результат, имеет определенное преимущество.
ВспышкаВспышка необходима для освещения затемненных мест. Съемка со вспышкой – это особое искусство, поскольку ограниченная функциональность смартфонов, как правило, не позволяет играть светом и полутонами. Обычно телефоны оснащаются мощным ксеноновым или светодиодным источником света, который создает при съемке эффект вспышки молнии.
Иными словами, фотографируемый объект освещается неравномерно, что приводит к недостоверной цветопередаче. Правда, некоторые модели телефонов, как например, айфон, оснащены вспышками типа True Tone Flash. Эти вспышки уже не грешат вышеупомянутым недостатком и дают более мягкий свет с желтоватым оттенком, который не искажает цветопередачу.
Удобство использованияУ фотографов есть такая поговорка: лучшая камера та, которая сейчас под рукой. В конце концов, все эти выдающиеся показатели, крупные матрицы, миллионы пикселей и мощные вспышки не стоят ни гроша, если ими не получается воспользоваться в нужный момент. Поэтому, выбирая телефон, следует также обратить внимание, насколько быстро и просто можно получить доступ к нужному приложению и какие возможности оно предоставляет. В этом можно убедиться, попросив на время телефон у друга или протестировав магазинные экспонаты.
Одно из побочных явлений нашей технологической эпохи – навязывание потребителям представления о том, что чем больше, тем лучше. Больше памяти, Герц, больше экранной площади, цветовых тонов, больше пикселей, больше, больше, больше
Однако, если вдуматься, то каждый поймет: такое утверждение не всегда соответствует действительности. Как например, большое количество мегапикселей – еще не гарантия качественного снимка. Они, конечно, имеют какое-то значение, но далеко не самое главное. Точно так же, как не нельзя сыграть пьесу с одними второстепенными персонажами, не получится снять качественное фото, если у камеры всего одна выдающаяся характеристика – огромное количество пикселей.
Ильдар Камаев
05.06.2020
Камера в телефоне: всё, что вы хотели знать, но боялись спросить
Почему смартфон А с камерой на 16 мегапикселей снимает хуже, чем смартфон Б всего с 12-ю? Неужели здесь чем меньше, тем лучше? Но почему тогда смартфон В с камерой на 24 мегапикселя снимает лучше, чем А и Б вместе взятые? Может быть, потому что он новее? Но почему тогда смартфон Г пятилетней давности с его 41 мегапикселем снимает лучше, чем А, Б и В? Всё-таки больше – лучше? Так отчего тогда не слишком старый, но уже и не новый смартфон Д с камерой на 12 мегапикселей выдаёт ещё более качественные снимки, да ещё и в сложных условиях освещения? Попробуем разобраться в секретах фотографических возможностей современных смартфонов.
Больше – лучше
Правда ли, что чем больше мегапикселей, тем лучше камера? Когда-то давно телефоны оснащались камерами на 0.5 Мп. На их фоне конкуренты с 1.3 мегапикселями давали заметно лучший результат. А уж когда начали выходить матрицы с пятью, шестью и более мегапикселями, мы, наконец, начали верить заявлениям производителей о том, что телефон скоро вытеснит компактные «мыльницы». Забегая вперёд, именно это и произошло – достаточно посмотреть на динамику продаж компактных фотоаппаратов.
Несколько лет назад матрицы смартфонов достигли показателей, сравнимых или превосходящих показатели недорогих, а потом и среднего класса «мыльниц». 12, 16, 20 мегапикселей – далеко не предел. Именно количеством мегапикселей так любят прихвастнуть маркетологи во время анонса очередной новинки.
Как бы банально это ни звучало, при прочих равных условиях (об этом ниже) сенсоры с более высоким количеством точек выдадут более чёткий, детальный результат в сравнении с сенсорами с меньшим разрешением. Впрочем, часто спутником более высокого разрешения картинки является повышенный шум, «зернистость» картинки – либо его обратная сторона: размытие мелких деталей изображение агрессивными алгоритмами шумоподавления. Всё это может привести (и часто приводит!) к тому, что снимки, полученные на сенсоры с меньшим числом мегапикселей выглядят лучше, чем фотографии, сделанные камерой с большим разрешением.
Почему так происходит? Дело в том, что более детальные снимки с сенсоров большего разрешения можно получить именно при «прочих равных условиях», в которые входит много чего. Здесь и оптика, способная обеспечить необходимую сенсору разрешающую способность, и алгоритмы обработки данных, и технология, по которой выполнен сам сенсор. Одним из основных «прочих» параметров является размер точки.
Больше – лучше: часть II
Размер одного пикселя – одна из важнейших характеристик сенсора, о которой практически никогда не говорят маркетологи. При прочих равных условиях чем больше размер точки, тем большее количество фотонов попадёт на неё во время экспозиции кадра. В сравнении с датчиком, оборудованным более мелкими ячейками, сенсор с крупными пикселями будет выдавать меньше шумов в потоке необработанных данных при фиксированном уровне усиления сигнала (грубо говоря, при тех же значениях чувствительности ISO).
Насколько меньше шумов? Зависимость пропорциональна квадрату диагонали. Так, сенсор IMX378, которым оснащаются смартфоны Google Pixel и Pixel XL первого поколения, обладает точкой в 1.55 μm, а смартфон Essential PH-1, оснащённый сенсором IMX258, имеет точки размером лишь в 1.12 μm. Соответственно, на каждый пиксель камеры Google Pixel попадёт в 1.91 раза больше фотонов при тех же условиях освещения и параметрах съёмки – иными словами, «шуметь» камера Pixel будет примерно в два раза меньше, чем камера Essential Phone. В табличке ниже можно ознакомиться с характеристиками некоторых популярных сенсоров, используемых в камерах современных смартфонов. Да-да, современных – несмотря на то, что некоторые модули увидели свет три года назад, их до сих пор продолжают использовать!
Модель | Разрешение | Диагональ | Размер точки | Дата выхода |
IMX258 | 4224 x 3136 13 MP | 5.867 mm (1/3.06″) | 1.12 μm | September 2015 |
IMX260 | 4032 x 3024 12.2 MP | 7.06 mm (1/2.55″) | 1.40 μm | February 2016 |
IMX268 | 3840 x 2160 8 MP | 5.14 mm (1/3.61″) | 1.12 μm | February 2016 |
IMX278 | 4224 x 3136 13 MP | 5.867 mm (1/3.06″) | 1.12 μm | July 2015 |
IMX286 | 3968 x 2976 12 MP | 6.2 mm (1/2.9″) | 1.25 μm | April 2016 |
IMX298 | 4608 x 3456 16 MP | 6.521 mm (1/2.8″) | 1.12 μm | November 2015 |
IMX300 | 5984 x 4140 25 MP[a] | 7.87 mm (1/2.3″) | 1.08 μm | September 2015 |
IMX315 | 4032 x 3024 12.2 MP | 6.15 mm (1/2.93″) | 1.22 μm | September 2015 |
IMX318 | 5488 x 4112 22.5 MP | 6.858 mm (1/2.6″) | 1.0 μm | February 2016 |
IMX333 | 4032 x 3024 12.2 MP | 7.06 mm (1/2.55″) | 1.40 µm | |
IMX338 | 5344 х 4008 21 MP | 7.487 mm (1/2.4″) | 1.12 μm | June 2016 |
IMX345 | 4032 x 3024 12.2 MP | 7.06 mm (1/2.55″) | 1.40 µm | |
IMX350 | 5120 x 3840 20 MP | (1/2.8″) | 1.0 μm | |
IMX351 | 4608 x 3456 16 MP | (1/3.09″) | 1.0 μm | |
IMX362 | 4032 x 3024 12.2 MP | 7.06 mm (1/2.55″) | 1.40 μm | November 2016 |
IMX363 | 4032 x 3024 12.2 MP | 7.06 mm (1/2.55″) | 1.40 μm | |
IMX371 | 4608 x 3456 16 MP | (1/3″) | 1.0 μm | |
IMX376 | 5120 x 3840 20 MP | 6.38 mm (1/2.78″) | 1.0 μm | November 2016 |
IMX378 | 4056 x 3040 12.3 MP | 7.81 mm (1/2.3″) | 1.55 μm | September 2016 |
IMX380 | 4056 x 3040 12.3 MP | 7.81 mm (1/2.3″) | 1.55 μm | |
IMX386 | 4032 x 3016 12 MP | 6.2 mm (1/2.9″) | 1.25 μm | July 2016 |
IMX398 | 4608 x 3456 16 MP | 6.4 mm (1/2.8″) | 1.12 μm | October 2016 |
IMX400 | 5056 x 3792 19.1 MP[b] | 7.73 mm (1/2.3″) | 1.22 μm | February 2017 |
IMX408 | 2.2 MP | 4.983 mm 1/3.61 | 2.24 μm | |
IMX486 | 4032 x 3016 12 MP | 6.2 mm (1/2.9″) | 1.25 μm | February 2018 |
IMX519 | 4656 x 3496 16 MP | 6.828 mm (1/2.6″) | 1.22 μm | February 2018 |
Размер точки напрямую влияет и на детализацию снимка. Для того, чтобы камера смогла эффективно использовать мелкие точки, её оптика должна обладать более высокой разрешающей способностью по сравнению с той, что может быть установлена в камеру с более крупными точками. С учётом того, что сенсоры с более мелкими точками, как правило, стоят дешевле своих более крупноячеистых собратьев, надеяться на более качественную оптику здесь, пожалуй, не стоит.
Наши рекомендации
Если качество снимков для вас – на первом месте, в первую очередь обращайте внимание не на разрешение камеры в мегапикселях, а на размер точки. Так, смартфоны Moto Z и Moto Z2 Force оборудованы камерами на 12 Мп, но в первом поколении устройства размер точек – 1.12 μm, а во втором – 1.25 μm. Неудивительно, что второе поколение линейки Moto Z снимает заметно лучше первого.
Какой именно размер точек хорош? Самыми крупными точками обладает первое поколение смартфонов Pixel: 1.55 μm. Мало отличается качество снимков на камеры с точкой 1.40 μm. Смартфоны с камерами, сенсоры которых несут ячейки размером в 1.22 μm вполне способны отлично снимать днём и вечером на улице, но в темноте вам придётся положиться на оптический стабилизатор (если он есть) или смириться с шумом. А вот на сенсор с точками в 1.12 μm и меньше качественные снимки удастся получить только ярким днём; если же камера с таким размером точки не оборудована оптической стабилизацией, то о снимках в тёмное время суток лучше забыть для сбережения собственных нервов.
Итак, мы выяснили, что размер ячейки фотодетектора (того самого пикселя, который исчисляется в «мега») напрямую влияет на уровень шумов в необработанном потоке данных, который выдаёт сенсор. В свою очередь, уровень шума напрямую влияет на детализацию конечного снимка. Если современные алгоритмы шумоподавления уже давно научились сводить на нет цветовой шум (печально известные всполохи случайного цвета, которыми отличались ранние цифровые фотографии), то с монохромным шумом, «зерном», справиться без потери детализации куда сложнее. Снижение зернистости снимка так или иначе приводит к «съеданию» мелких деталей и, соответственно, к падению как видимого, так и фактического разрешения.
Больше – лучше? Часть III
Итак, мы выяснили, что использование более крупных светочувствительных ячеек (тех самых пикселей, которые «мега») позволяет естественным образом увеличить чувствительность сенсора и снизить шумы, в то же время позволяя использовать более дешёвую оптику с меньшей разрешающей способностью относительно сенсоров с большей плотностью точек. И сенсоров с крупными ячейками на рынке достаточно ещё с позапрошлого года. Почему же производители смартфонов не устанавливают такие сенсоры во все устройства подряд? Неужели тот самый сговор и сегментация рынка?
Причины, по которым в смартфоны продолжают устанавливать менее качественные сенсоры, имеют как маркетинговые, так и чисто технические обоснования.
Начнём с маркетинга. Что выберет покупатель: смартфон-флагман с камерой на 21 Мп или другой флагман всего с 12 Мп? «Больше – лучше»: покупатель видит и понимает, что такое мегапиксели, но совершенно не в курсе, что такое размер точки и каков он в первом и во втором случае. Уважающие себя производители молча устанавливают в свои устройства камеры с крупными ячейками. Здесь и Google (камеры Pixel, Pixel XL обладают точками рекордного размера — 1.55 μm, второе поколение – 1.40 μm, зато с оптическим стабилизатором), и Samsung (размер ячейки основной камеры которого — 1.40 μm). Приличными сенсорами оборудованы смартфоны Apple последнего поколения (1.22 μm в основном модуле, но всего 1.0 μm в модуле камеры с двойным приближением) и Motorola (Moto Z2 Force — 1.22 μm). А вот LG в странном флагманском устройстве G6 сэкономила, установив старенький сенсор с точками 1.12 μm, а в безусловно флагманском LG V30 сэкономила ещё пуще, поставив датчик с ультракомпактными пикселями размером всего 1.0 μm.
Более качественные сенсоры с крупными точками стоят дороже аналогов с мелкой точкой, оказывая прямое влияние на BOM (Bill Of Materials, себестоимость комплектующих) смартфона. Насколько дороже? Разница в цене между самым дорогим и самым дешёвым модулем одного поколения может достигать $4-8. И если для вас как пользователя вопрос всего лишь в том, доплатить ли пусть даже $8 за отличную камеру или сэкономить и довольствоваться плохой, то для производителя, который выпускает модель миллионными тиражами, экономия получается более чем существенной.
Опуская маркетинг и экономику масштабов, важно понимать и то, что сенсор с крупными точками – это крупный сенсор. Крупный сенсор требует соответствующих размеров оптики, а соответствующих размеров оптика оказывается не только шире, но и толще объектива для более компактной матрицы. В результате смартфоны обзаводятся более или менее страшненькими наростами, в которых монтируют растолстевший модуль.
Альтернативой такому решению может стать несколько более толстый корпус устройства. Так, первое поколение Pixel и Pixel XL оснащалось модулем с размером точки 1.55 μm, при этом обошлось без каких-либо выступающих частей.
Если же производитель хочет сделать тонкий смартфон (во всяком случае – тоньше, чем Pixel) без каких-либо наростов, ему остаётся лишь прибегать к компромиссам, используя более тонкие модули с меньшим размером матрицы и, как следствие, более мелкими пикселями.
Впрочем, даже из этого правила есть свои исключения. Таким исключением стали смартфон HTC One (M7) и его последователь HTC M8, в которых использовались так называемые «ультрапиксели». Фактически UltraPixel – всего лишь маркетинговый термин, означавший использование модуля с крупным размером точек 2.0 μm. Такие точки способны собрать в 1.66 раза больше света, чем ячейки модуля Google Pixel (1.55 μm). Нужно отметить, что дизайнеры HTC One не решились встроить в телефон камеру в виде выступающего модуля, оформив её заподлицо с задней крышкой.
Такое дизайнерское решение, ограничившее максимальные физические габариты модуля, в совокупности с решением использовать крупные ячейки не оставило другого выхода, кроме использования модуля с заданными габаритами и заданным размером ячеек… Правильно: из одной шкуры можно сшить семь маленьких шапок или одну большую. В заданные дизайнерами габариты вписалось лишь 4 миллиона ячеек размером в 2.0 μm. И можно сколько угодно убеждать пользователей, что ультрапиксели – это круто, но низкое разрешение – это низкое разрешение. Пользователи, что называется, не купились.
Что ж, разработчики HTC учли негативный опыт. В весьма удачном смартфоне HTC 10 размер точки был уменьшен до 1.55 μm (хотелось бы написать – как в Google Pixel, но на тот момент этим же сенсорам оснащались Nexus 5x и Nexus 6p), а разрешение подросло до 12 Мп. Скрипя зубами, дизайнерам пришлось проектировать нарост.
Ужасно выглядит? Дело вкуса; для многих качество снимков на первом месте, а нарост… нарост можно стерпеть. Впрочем, много и таких пользователей, которые не понимают (да и не хотят понимать) связи между качеством снимков, размером модуля и толщиной смартфона. Именно это большинство не забывает пнуть производителя за ненужный нарост… и многие производители «ломаются», соглашаясь выпускать более тонкие устройства без выступов.
А теперь – вопрос на засыпку: почему в iPhone 7, 8 и iPhone X дополнительная камера с телеобъективом оборудована точками размером всего 1.0 μm?
Казалось бы, именно для телевика нужно подобрать сенсор с максимальным размером точки, а оптику – никак не с диафрагмой f/2.4, а хотя бы f/1.8. Действительно, если рассуждать с точки зрения качества изображения, то нужны и крупные точки, и максимальная диафрагма. Но здесь мы сталкиваемся с жесточайшей нехваткой места. Для того, чтобы вписать телевик с честным двукратным приближением в компактный корпус смартфона, дизайнерам пришлось пойти на жертвы, использовав самый миниатюрный сенсор и оптику с невысокой светосилой.
Когда нельзя верить на слово
Мы уже выяснили, что заявлениям маркетологов не всегда следует верить. Отдельной строкой пройдёмся по смартфону OnePlus 5, который вышел под лозунгом “Clearer photos”. Этот слоган стал локомотивом всей рекламой кампании устройства; фразу “clearer photos” предлагалось ввести в поле «секретного кода», который был нужен для оформления предзаказа сразу после анонса устройства. Казалось бы, относительно уважаемый производитель не может обмануть хотя бы в основном рекламном лозунге? Оказалось, может, да ещё как!
Давайте внимательно посмотрим на камеры устройства. На задней стороне смартфона их две: основная (модуль IMX398, 16 Мп с размером точки 1.12 μm) и дополнительный, обеспечивающий «двукратный зум без потерь» модуль IMX350, 20 Мп с точкой 1.0 μm).
Сразу возникает логичный вопрос: а, собственно, каким именно образом камера с размером пикселя 1.12 μm собирается обеспечивать эти самые “clearer photos”? Оказалось, никак:
Что за точки? Это всего лишь датчики фазовой фокусировки модуля IMX398, для которого компания не сделала грамотной программной обвязки на уровне драйверов. Для того, чтобы замаскировать позорную недоработку, сделать заплатку поручили не SONY (которая разработала сам модуль и драйверы для него), а разработчикам приложения камеры. Результат получился «отличный»: запредельными настройками шумоподавления точки были равномерно размазаны. Заодно съедались и мелкие детали; вместо травы, листвы, веток получалась каша, а лица людей превращались во что-то среднее между акварельным портретом и пластиковой куклой. Этот эффект пользователи окрестили «эффектом акварели».
А как обстоят дела с двукратным зумом без потерь? В отличие от Apple, которые встроили модуль хоть и с мелкими пикселями, но с оптикой с честно удвоенным фокусным расстоянием, дизайнеры OnePlus решили обойтись малой кровью.
Следите за руками. Раз: приближение в 1.33 раза за счёт оптики с «одноцелотридесятым» фокусным расстоянием. Два: из центральной части 20 Мп сенсора вырезают примерно 9 Мп, что даёт приближение ещё приблизительно в полтора раза (напомню, приближение пропорционально квадратному корню от числа «кропнутых» мегапикселей). А чтобы получить те же 16 Мп, что и на основной камере, вырезанные 9 Мп попросту интерполируют до 16-ти. Назвать всю эту процедуру «двукратным зумом без потерь» могут только маркетологи.
Ещё больше – ещё лучше?
В 2013 году на рынок вышел смартфон Nokia Lumia 1020, оборудованный уникальной камерой на 41 Мп. В смартфоне использовалась технология PureView, позволявшая комбинировать пиксели для уменьшения шумов в условиях слабого освещения. Пять лет назад это был настоящий прорыв; для того времени камера снимала не просто хорошо, а прямо-таки замечательно. Вы до сих пор можете время от времени услышать что-то вроде «а вот Lumia 1020…»
Насколько оправдана репутация камеры с сенсором в 41 Мп? Давайте рассмотрим снимки, сделанные на этот смартфон в полном разрешении. Для этого предлагаем пройти по ссылке https://blogs.windows.com/devices/2013/07/11/nokia-lumia-1020-picture-gallery-zoom-in/
Посмотрели? Сегодня, в середине 2018 года, пять лет спустя после выхода этой модели на рынок, я вижу типичную (кстати, размер точки — 1.12 μm) картину: неплохая резкость в центре кадра с падением разрешения ближе к краям, определённо – шумы в тенях. Но 2013 год! 41 мегапиксель! Даже в полном разрешении для того времени снимки смотрятся замечательно, а ведь мы ещё не рассмотрели технологию PureView, которая, комбинируя соседние пиксели (и уменьшая эффективное разрешение снимка), позволяла добиться вот такого уровня шума практически в полной темноте:
Что это – грамотная постобработка или что-то иное? Можно ли добиться подобного качества, просто уменьшив разрешение готового снимка в условном фотошопе? На самом деле – нет, и вот почему.
Алгоритмическая фотография
Постобработка – важный этап в цифровой фотографии. При съёмке в формат RAW, своеобразный «цифровой негатив», фотографы часто проводят постобработку вручную в одном из мощных десктопных (а в настоящее время – уже и мобильных) пакетов. Грамотная постобработка позволяет в определённых пределах «вытянуть» пересвеченные участки, осветлить тени, кадрировать снимок, добавить спецэффекты, уменьшить цифровой шум. Тем не менее, на этапе постобработки человек или компьютер работают с уже готовым плоским изображением. Даже в RAW не сохраняется информация о глубине отдельных участков, а динамический диапазон матрицы ограничивает возможности корректировки снимков с контрастным освещением.
В традиционной цифровой фотографии проблему ограниченного динамического диапазона до сих пор решает режим HDR, который поддерживается многими компактными и системными фотоаппаратами. В этом режиме экспонируется от двух до четырёх кадров, как правило с «вилкой» от -2 до +2 EV. Далее кадры комбинируются (современные камеры уже научились корректно накладывать их друг на друга даже при съёмке с рук; более старые фотоаппараты требовали использовать для съёмки в HDR штатив), и на выходе – по крайней мере, в теории, – получается кадр без провалов в тенях и пересвеченных участков.
У традиционного HDR есть ряд проблем. Во-первых, время на съёмку: сделать несколько кадров подряд может занять до секунды, а это – много. Во-вторых, время на обработку: даже в современных фотоаппаратах единственный кадр в HDR может обрабатываться несколько секунд, что может оказаться неприемлемым. Если в процессе съёмки серии в кадр попадает движущийся объект (или, скажем, ветер колышет листву или ветки деревьев), многие фотоаппараты «размножат» объект, а на месте колышущейся листвы образуется каша.
Все эти проблемы призвана решить современная алгоритмическая фотография, использующая мощные процессоры смартфонов для съёмки и обработки кадров. Одной из самых удачных реализаций алгоритмической фотографии является алгоритм HDR+, разработанный в лаборатории Google. Подробно и с примерами снимков этот режим описан в журнале «Хакер» в статье Дениса Погребного «Идеальное фото. Что такое HDR+ и как активировать его на своем смартфоне». Желающих обратиться к первоисточнику отправляем к подробному (и очень техническому) документу Burst photography for high dynamic range and low-light imaging on mobile cameras.
Алгоритм HDR+ решает целый ряд проблем традиционного HDR. Задержка при съёмке HDR? В режиме ZSL (Zero Shutter Lag) её не будет: кадры берутся из буфера. Время на склейку финального снимка? Она происходит в фоновом режиме, и занимает меньше секунды. Дополнительный бонус – комбинирование нескольких кадров позволяет уменьшить шумы, выдавая гораздо более чистую картинку в сравнении с захватом единственного кадра.
Google Camera – сложнейший проект, который может «потянуть» корпорация уровня Google, Apple или Microsoft (все три компании используют в своих устройствах подобные технологии). Для пользователя всё выглядит просто: нажал на кнопку – получил снимок, качество которого будет выше, чем у конкурентов. Внутри же – масса тонких настроек и оптимизаций, которые не видны обычному пользователю. Лишь совсем недавно разработчикам удалось получить доступ к внутренностям Google Camera, открыв энтузиастам возможность покрутить настройки.
В чём преимущества HDR+ для пользователя? Процитируем статью Дениса Погребного:
Выделим основные достоинства HDR+:
- Алгоритм замечательно устраняет шумы с фотографий, практически не искажая детали.
- Цвета в темных сюжетах гораздо насыщеннее, чем при однокадровой съемке.
- Движущиеся объекты на снимках реже двоятся, чем при съемке в режиме HDR.
- Даже при создании кадра в условиях недостаточной освещенности вероятность смазывания картинки из-за дрожания камеры сведена к минимуму.
- Динамический диапазон шире, чем без использования HDR+.
- Цветопередача преимущественно получается естественней, чем при однокадровой съемке (не для всех смартфонов), особенно по углам снимка.
Всё это соответствует действительности, но есть у режима HDR+ и свои ограничения. Так, быстро движущиеся объекты снимать в HDR+ всё же не стоит: алгоритмы алгоритмами, но результат наложения нескольких кадров будет непредсказуем. Обработка каждого снимка серьёзно нагружает процессор, приводя к нагреву телефона и быстрому расходу аккумулятора, а в режиме ZSL, когда камера постоянно снимает в буфер, расход аккумулятора просто зашкаливает. Тем не менее, результат того стоит: снимки в HDR+ практически всегда выглядят намного лучше кадров с единственной экспозицией.
Карманная машинка времени
Если на вашем смартфоне можно запустить Google Camera в режиме HDR+, то вы – счастливый обладатель карманной машинки времени. При помощи Google Camera ваш смартфон сделает снимок ещё до того, как вы нажмёте на кнопку! Звучит как фантастика? Тем не менее, современные технологии сделали этот сценарий возможным.
Как это работает? Если Google Camera запущена на смартфоне, на котором приложение поддерживает съёмку HDR+ в режиме ZSL (Zero Shutter Lag), будет происходить следующее. При запуске приложения Google Camera сразу же начинает съёмку, снимая данные с сенсора и сохраняя их в буфер в оперативной памяти смартфона (забегая вперёд, некоторые смартфоны реализуют похожую технологию, не используя ресурсы центрального процессора и даже основную память смартфона – кадры сохраняются в специальный буфер в модуле камеры). Как только пользователь нажимает на кнопку спуска затвора, Google Camera фиксирует момент и извлекает из буфера несколько последних кадров, точное число которых варьируется в зависимости от множества факторов (в некоторых версиях Google Camera, модифицированных сторонними разработчиками, этот параметр можно настраивать).
Из всей серии выбирается несколько резких кадров (таким образом, в частности, смартфоны Pixel и Pixel XL компенсируют отсутствие оптического стабилизатора). Каждый кадр разбивается на тайлы. Соответствующие тайлы из разных кадров накладываются друг на друга; при этом компенсируется как смещение камеры во время съёмки, так и наличие в кадре движущихся объектов: в отличие от традиционного HDR, при съёмке через Google Camera мы не получим удвоения или утроения движущихся объектов.
Технология проста на словах, но успешно реализовать её в своих продуктах удалось единицам. Вплоть до выхода Snapdragon 845, в котором Qualcomm предложила всем желающим воспользоваться подобной технологией, алгоритмическая фотография оставалась уделом компаний, способных содержать собственный специализированный отдел разработки.
Монохромные сенсоры: бутафория или?..
Мы уже привыкли видеть в смартфонах не одну, а две основных камеры. Производители пока не пришли к общему мнению, нужна ли вторая камера вообще, а если нужна – то зачем. Google проводит последовательную политику: вторая камера не нужна, а всё необходимое (например, портретный режим) мы реализуем с одним, хоть и хитрозакрученным сенсором. Apple – сторонники двух модулей; при помощи второго реализуется двукратный оптический зум (на самом деле – фиксированный объектив с удвоенным эффективным фокусным расстоянием) и определяется глубина сцены в портретном режиме. В LG поступили с точностью до наоборот: второй модуль – широкоугольный, почти «рыбий глаз». Huawei последовательно продвигает монохромные модули; по заявлениям производителя, комбинирование кадров с двух модулей позволяет естественным образом добиться снимков с низким уровнем шума и расширенным динамическим диапазоном.
Не все производители столь последовательны даже внутри одной линейки. Так, OnePlus последовательно попробовали сперва псевдо-двукратный зум, потом – монохромный модуль, который нельзя использовать для съёмки чёрно-белых фотографий, и, наконец, пришли к тому, что камер должно быть две, но одну из нельзя использовать ни для чего, кроме портретного режима. В младших моделях Xiaomi слабенький дополнительный модуль используется лишь для определения глубины резкости, а во флагманской модели Mi 8 – в качестве широкоугольника. Не может определиться с тем, для чего нужна вторая камера, и Motorola: если в модели Moto X4 в качестве дополнительного используется широкоугольная камера, то в Moto Z2 Force второй модуль – монохромный.
И если в ситуации с широкоугольными модулями и условными телефото нас может заинтересовать разве что оптика (характеристики самого сенсора, как правило, заметно уступают характеристикам основного), то монохромные сенсоры стоят особняком, предлагая ряд преимуществ по сравнению с классическими сенсорами RGBG.
За теорией обратимся к статье, опубликованной компанией RED, известным производителем цифровых видеокамер.
Основной сенсор вашей (и практически всех остальных) камеры построен по принципу цветовой мозаики. На каждую ячейку попадают только волны из определённого диапазона (как правило, выбираются красный, синий и зелёный цвета, но бывают и фильтры с белыми субпикселями). В зависимости от ширины этого диапазона, который регулируется интенсивностью светофильтра, можно получить снимки с большим цветовым охватом – но более тёмные или более шумные, или наоборот – более светлые, но с блеклыми цветами. Грубо говоря, из трёх фотонов R, G и B в ячейку попадёт лишь один, который будет пропущен светофильтром:
Источник: RED
Фактически в каждую «цветную» ячейку может попадать заметно меньше 33% света в зависимости от заданного производителем значения цветового охвата. В любом случае, максимально теоретически возможный КПД светочувствительности цветной матрицы не будет превышать 33%.
Для того, чтобы получить привычное глазу изображение, значения цветных пикселей интерполируются. Таким образом, максимально возможное монохромное разрешение полученного изображения будет приблизительно соответствовать количеству точек сенсора (хотя, например, при фотографировании зелёной травы или листьев будут задействованы в основном зелёные точки). Цветное разрешение будет ниже; впрочем, такая модель вполне согласуется с особенностями человеческого зрения. Подробнее о процессе реконструкции изображения можно почитать в статье Demosaicing.
Источник: RED
Я думаю, вы уже поняли, что будет дальше. Встречайте монохромный сенсор! Никаких цветофильтров, никакой потери светового потока и никакой мозаики:
Источник: RED
Благодаря отсутствию фильтров каждый пиксель монохромного сенсора попадает как минимум в три раза больше фотонов, чем на соответствующую ячейку цветного. В результате – на выбор: ниже уровень шума (можно или уменьшить выдержку, или снизить ISO) либо расширенный динамический диапазон в тенях. Нет и необходимости восстанавливать структуру кадра из «мозаичного» изображения; результат – повышенная детализация и полное отсутствие муара (ложных цветов, артефактов процесса реконструкции).
Посмотрите, какие прекрасные чёрно-белые фотографии выдаёт монохромный сенсор Moto Z2 Force без каких-либо ухищрений с алгоритмической фотографией (смотреть лучше на полный экран):
А что, если хочется такую детализацию, как у монохромного сенсора, но в цвете? У Huawei есть ответ: смартфоны линейки P способны комбинировать данные с цветного и монохромного сенсоров, создавая изображения с минимумом шумов, расширенным динамическим диапазоном и повышенной детализации. По крайней мере, такова теория, а точнее — маркетинг. На практике же мы видим обычную «кашу» на месте травы и общий результат, заметно уступающий снимкам, сделанным на менее продвинутые камеры в режиме HDR+ при помощи Google Camera. За примерами далеко ходить не нужно: сайт Photography Blog протестировал камеры Huawei P20. Разверните на полный экран тестовый кадр и насладитесь детализацией травы на газоне. Если что, это ISO 50, минимальное из возможных. Кстати, по мнению обозревателей, то, что мы видим на снимке ниже — в целом демонстрация отличного качества изображения (цитата: «On the whole, image quality is excellent.») Тут одно из двух: или мои стандарты качества диаметрально противоположны стандартам обозревателей, или… или тут что-то не то.
Источник: Photography Blog
Оптика и стабилизатор
Что такое фотоаппарат без оптики? Во времена плёночных зеркалок – просто сквозная дыра, матерчатая шторка и крышка, чтобы удерживать плёнку. В цифровых зеркальных фотоаппаратах место плёнки занял сенсор, но даже тогда никому не приходило в голову принижать важность объектива для получения качественного снимка. В мобильной же фотографии про объектив обычно известно чуть больше, чем ничего. Максимум, что нам сообщают – это максимальное относительное отверстие (по принципу «f/1.7 – хорошо, а f/2.4 – тёмный») и иногда – эффективное фокусное расстояние. Выбирая смартфон, который снимал бы лучше других, пользователи обращают внимание на что угодно – на мегапиксели, на маркетинговые шильдики Leica или Carl Zeiss, на количество камер, в конце концов, — только не на объектив.
К сожалению, принять информированное решение относительно оптики, установленной в том или ином смартфоне в условиях недостатка информации (где графики MTF? Где оптические схемы, в конце концов?) не представляется возможным. С другой стороны, проектирование оптики для мизерного размера телефонных матриц – дело простое и давно отработанное. В отличие от зеркальных фотоаппаратов, здесь нет ни механического затвора перед матрицей, ни диафрагмы с переменным значением. Не нужен зум: объективы смартфонов обладают фиксированным фокусным расстоянием. Расстояние между задней линзой объектива и матрицей может быть любым, хоть вообще нулевым – при желании линзу можно наклеить на матрицу (сравните с зеркальными фотоаппаратами, при проектировании оптики для которых необходимо учитывать немалое расстояние между самим объективом и матрицей). Другими словами, для любого смартфона очень просто спроектировать объектив, обладающий идеальными в рамках заданного сенсора оптическими свойствами. А можно сэкономить несколько центов и спроектировать объектив, обладающий очень хорошими оптическими свойствами. А можно сэкономить ещё несколько центов, установив оптику посредственного качества. Нужно ли говорить, какой путь выбирает подавляющее большинство производителей?
Тем не менее, по некоторым косвенным признакам о качестве объектива судить всё-таки можно. Да, маркетинговые шильдики часто остаются именно маркетинговыми шильдиками, но время от времени производители отказываются от призрачной экономии и всё-таки устанавливают качественную оптику. Одним из косвенных признаков качественного (более сложного и дорогого в производстве) объектива является наличие оптической стабилизации, о которой производитель непременно заявит в характеристиках. Оптический стабилизатор позволяет делать снимки без смаза от дрожания рук с более длинными выдержками – соответственно, на меньших значениях чувствительности ISO, что означает меньший уровень шума и большую вероятность выхода качественного кадра. Наличие оптического стабилизатора упрощает работу алгоритмов HDR, снижая вычислительную нагрузку при комбинировании кадров. Если у вас есть выбор – обратите внимание, есть ли в интересующем вас устройстве оптический стабилизатор.
Заключение
Камеры современных смартфонов – это не просто комбинация из матрицы и объектива. Это и алгоритмы, сложность и одновременно изящество идеи которых способны поразить воображение. Работа этих алгоритмов требует мощных процессоров и продвинутых DSP, которые встраиваются в большинство современных систем на чипе. Вы спрашиваете, зачем смартфону вычислительная мощь прошлогоднего ноутбука? Например, для того, чтобы, нажав на кнопку, вы смогли мгновенно получить кадр такого качества, над которым профессионалу с зеркалкой пришлось бы ещё попотеть в лаборатории.
Промышленные дроны с камерами высокого разрешения
Какое должно быть разрешение у камер промышленных дронов, рассмотрим три важных аспекта: разрешение пикселей, шаг сканирования, пространственное разрешение.
Содержание статьи
Разрешение изображения
Разрешение изображения может иметь несколько значений. Это главный вопрос для многих задач, требующих высокого качества данных. Но что такое хорошее разрешение? Как его количественно оценить? Это просто вопрос камеры беспилотника, или это также связано с вашими навыками пилотирования и правильным использованием дрона? В этой статье мы представляем три важных показателя для описания разрешения камеры беспилотного летательного аппарата. Чтобы проиллюстрировать эти понятия, мы будем ссылаться на квадрокоптеры, которые мы знаем лучше всего – камеры наших промышленных противоударных дронов Elios 1 и Elios 2.
Разрешение изображения в пикселях – это количество пикселей, составляющих изображение. Он выражается числом столбцов и строк, 1920 x 1080, или непосредственно общим числом пикселей, 2,1 МП (1920 x 1080 = 2’073’600).
Дрон ELIOS 1 разрешение | ||
FHD video | 1920 x 1080 | 2.1 MP |
Дрон ELIOS 2 разрешение | ||
FHD video | 1920 x 1080 | 2.1 MP |
4K video | 3840 x 2160 | 8.3 MP |
Photo | 4’000 x 3’000 | 12 MP |
Разрешение изображения это фундаментальная единица всех цифровых изображений, оно показывает, насколько большим является изображение, но, само по себе, оно мало говорит о том, насколько большой объект появляется на изображении, или каков уровень детализации вы можете наблюдать на изображении. Чтобы ответить на эти вопросы, у нас есть лучшие показатели, такие как шаг сканирования и пространственное разрешение.
Параметр | Применение |
Разрешение пикселя | Обмен данными и хранение, отображение изображения и цифровое увеличение |
Шаг сканирования (GSD), в мм/px | Измерения, фотограмметрия |
Пространственное разрешение, в lp/mm | Наименьший обнаруживаемый объект |
Шаг сканирования (GSD), в мм/px, представляет собой расстояние между центрами двух соседних пикселей, измеренное на наблюдаемом объекте. GSD 1 мм/px означает, что один пиксель на изображении представляет 1 мм в реальном мире. Меньший GSD означает, что объект будет казаться больше, и что меньшие детали будут различимы на изображении.
В отличие от разрешения пикселей, GSD зависит от расстояния между камерой и объектом: GSD улучшается (меньшие значения), когда камера приближается к объектам. С объективом рыбий глаз, GSD также зависит от положения объекта в изображении. Объекты в центре изображения имеют меньший GSD (они кажутся больше), а объекты в углах имеют более высокий GSD (они кажутся меньше).
На этом рисунке показано, как изменяется GSD на изображении, когда промышленный дрон Elios 2 обращен к плоской вертикальной стене. Он был получен путем автоматического измерения размера, по изображению регулярной сетки рисунка на стене.
Шаг сканирования является важной метрикой, которую следует учитывать при фотограмметрии и измерениях на изображениях. Однако он не полностью описывает способность обнаруживать и характеризовать объект или дефект в изображении.
Рассмотрим два снимка, сделанных одной и той же камерой и на одинаковом расстоянии от объекта. Оба изображения имеют одинаковое разрешение пикселей и GSD. Однако в одном случае освещение было недостаточным, и камера должна была увеличить либо значение ISO, либо время экспозиции, чтобы сохранить правильную экспозицию. Высокий ISO создаёт шум изображения, а длительное время экспозиции создаёт размытие движения при перемещении камеры. Это снижает качество изображения, а со временем и способность различать мелкие детали на изображении.
Два изображения в верхней части имеют одинаковое разрешение пикселей и одинаковый GSD — они были сделаны противоударным дроном Elios 2 на одинаковом расстоянии. На фото крупным планом (внизу) мы видим, что на изображение справа влияет размытие движения, уменьшая уровень детализации изображения по сравнению с левым изображением, где дрон был стабильным.
Пространственное разрешение к содержанию
Пространственное разрешение, или угловое разрешение, описывает мельчайшие детали, которые видны на изображении. В отличие от теоретического GSD, пространственное разрешение может быть выражено в другой единице, которая учитывает размытие, шум изображения, контраст и обработку изображения в целом: сжатие, шумоподавление, резкость края и т. д. Таким образом, пространственное разрешение является подходящей метрикой для количественной оценки способности обнаруживать и характеризовать объект на изображении.
Пространственное разрешение часто выражается в «парах линий на миллиметр». Этот шаблон используется для описания пространственной частоты чередующихся черно-белых линейных узоров.
Слева: рисунок с частотой 2,5 ЛП / мм. Справа: 5 ЛП / мм
Пространственное разрешение 2 ЛП / мм указывает на то, что на изображении можно различить шаблон с двумя циклами на миллиметр (две чёрные и две белые линии). Шаблон с более высокой частотой будет казаться серым, потому что чёрные и белые линии будут смешиваться вместе на изображении. В этом случае мы говорим, что шаблон не разрешен.
Снимок изображения, сделанного противоударным квадрокоптером Elios 2 (видео 4K) на расстоянии 300 мм от шаблона USAF 1951. Наименьшим разрешенным элементом является элемент 1, Группа 1 (обозначается зеленой стрелкой). В элементе 2 (чуть ниже) контраст начинает значительно уменьшаться, и отдельные линии не могут быть различены.
Пространственное разрешение обычно выше в центре изображения, чем на краях и углах, где объектив имеет более низкое качество. Кроме того, пространственное разрешение является изотропной (направленной) характеристикой. Вертикальные и горизонтальные шаблоны линий не могут быть разрешены одинаково.
Пространственное разрешение также зависит от расстояния фокусировки камеры и глубины резкости. На камере дрона Elios 2 самое высокое пространственное разрешение достигается, когда объект находится на расстоянии от 15 до 30 см от камеры. Если объект находится ближе, он будет казаться больше на изображении (ниже GSD), но он будет не в фокусе и казаться размытым, что уменьшает пространственное разрешение.
Для лучшего пространственного разрешение, по причине, упомянутой выше, очень важно знать кратчайшее фокусное расстояние камеры дрона, и оставаться на этом расстоянии во время проведения съёмки. Для того чтобы помочь пилоту лететь на оптимальном расстоянии от проверяемого объекта, противоударный дрон Elios 2 имеет функцию фиксации расстояния (distance lock), а на пульте управления Elios 2) показывается расстояние ELIOS-объект и шаг GSD (в mm/px). Пространственное разрешение обозначается средним значением цветового кода, как описано в таблице ниже.
Расстояние | Цвет | Значение | |
Более 40 см | белый | Приблизитесь для увеличения пространственного разрешения | |
От 30 до 40 см | зеленый | Высокое ПР и четкое изображение | |
От 20 до 30 см | оранж | Самое высокое ПР, но изображение размыто | |
Менее 20 см | красный | Изображение очень размыто. ПР уменьшается |
Обратите внимание, что маленькие экраны уменьшают восприятие размытости изображения, потому что изображение масштабируется до разрешения экрана. На планшете, используемом для управления дроном Elios 2 у вас может возникнуть соблазн пролететь на 15-20 см, не заметив размытия изображения. Но имейте в виду, что записанное видео 4K будет более резким и чётким, если вы останетесь на 30 см.
В дополнение к соответствующему расстоянию, следующие условия улучшают пространственное разрешение и качество изображения в целом:
- Большое количество света так, что ISO камеры будет низок, а выдержка короткая
- Стабилизируйте дрон для уменьшения размытости движения
- Очистите объектив камеры – отпечатки пальцев на объективе также делают изображение размытым и могут вызвать блики!
Пространственное разрешение является важным показателем для оценки качества изображения и способности обнаруживать или характеризовать интересующие объекты во время визуального осмотра. Однако важную роль играют и другие факторы:
- Техника освещения
- Цвета (контраст, баланс белого и др.)
- Возможность наблюдать объект с разных ракурсов
- Качество экрана
Упомянутые выше моменты действительно выходят за рамки разрешения камеры и зависят от оборудования дрона в целом. Небольшой размер противоударного квадрокоптера Elios 2 и его способность выдерживать столкновения, позволяют ему получить доступ к объекту и наблюдать его с разных углов. Также, уникальная система LED освещения улучшает восприятие деталей и облегчает обнаружение дефектов. Эти функции составляют хорошую часть способности противоударного дрона Elios 2 в защитном каркасе обнаруживать и распознавать интересующие вас объекты.
С некоторой практикой вы улучшите свои навыки пилотирования, и сосредоточите свое внимание на сборе данных, а не на навигации. Имея в виду концепции, описанные в этой статье, вы значительно улучшите качество съёмки.
Определение разрешения HD и мегапиксельной камеры
[ Примечание редактора: HD и мегапиксельное видеонаблюдение было горячей темой для индустрии безопасности, и тенденция установки IP-видео заключается в установке HD и мегапиксельных камер вместо IP-камер стандартного разрешения. В этой гостевой колонке Рауль Кальдерон из Arecont Vision (производитель мегапиксельных и HD-камер видеонаблюдения) выдвигает аргументы в пользу использования мегапиксельного видео и объясняет различия и сходства между HD и мегапиксельными камерами видеонаблюдения.]
Поскольку видеосистемы на базе IP продолжают набирать популярность на рынке видеонаблюдения, одним из преимуществ является возможность захвата изображений с высоким разрешением через мегапиксельное видео. Также появляется широкое распространение использование стандартов HDTV, которые преобладают на рынке потребительского видео. Изображения, создаваемые этим новым поколением камер, часто вместе называют изображениями высокой четкости (HD) или мегапиксельными изображениями. Поскольку термины HD и мегапиксель указывают на улучшенный уровень качества изображения по сравнению с традиционными аналоговыми изображениями, они часто считаются одинаковыми, но есть разница.
Фактически, широковещательное (или потребительское) разрешение HD не должно рассматриваться как цель видеонаблюдения. Мегапиксельные камеры могут предлагать разрешение изображения выше, чем разрешение HD вещания, и я думаю, что объяснение в порядке.
Мегапикселей против HD
Можно считать HD подмножеством мегапикселей. HD определяется определенными разрешениями с определенной частотой кадров и определенным соотношением сторон. Любая камера с разрешением более миллиона пикселей по определению является мегапиксельной камерой.Наименьшее разрешение в диапазоне мегапикселей на рынке безопасности составляет около 1,3 мегапикселя, что обеспечивает разрешение 1280 x 1024 пикселей (или 1,3 миллиона пикселей), и мы уже видим камеры безопасности с разрешением до 10 мегапикселей (3648 x 2752 пикселей). Ассортимент мегапиксельных камер продолжает расширяться в соответствии с требованиями различных приложений. Например, в моей собственной фирме Arecont Vision у нас есть широкий спектр мегапиксельных камер, включая 1,3, 1080p, 2, 3, 5, 8 и 10 мегапикселей, и мы также планируем 20-мегапиксельные камеры безопасности.
HD относится к камерам со стандартизированным разрешением 720p или 1080p. Цифры 720 и 1080 относятся к разрешению по горизонтали. Таким образом, разрешение камеры HD 720p обеспечивает изображение размером 1280 x 720 пикселей (в сумме составляет 921 600 пикселей, что означает, что камера HD 720p технически не является мегапиксельной камерой), а камеры HD 1080p обеспечивают разрешение 1920 x 1080 пикселей, или 2,1. мегапикселей. Формат видео HD также использует соотношение сторон 16: 9 (а не 5: 4 или 4: 3), а частота кадров стандартизирована и составляет 60, 50, 30 или 25 кадров в секунду (частота кадров в секунду зависит от вашего телевизора). .
Momentum для HD и мегапиксельного IP-видео
Согласно отчету TechNavio Insights, IP-наблюдение будет значительно расти среди конечных пользователей и крупных организаций. Преимущества программных функций, а также контроль, масштабируемость и широкая доступность видео часто упоминаются как факторы, способствующие этому росту. Однако одной из важнейших характеристик производительности IP-видеонаблюдения является возможность обеспечивать широкий диапазон разрешений видео.Благодаря сжатию H.264 и программируемым разрешениям и потоковой передаче новый стандарт разрешения видео может быть определен просто как «все, что требует приложение». Благодаря IP / мегапиксельному видео камеры, назначенные для охвата критических областей, теперь могут захватывать изображения любого уровня с разрешением до 10 или более мегапикселей (3648 x 2752 пикселей — почти в пять раз больше, чем разрешение камеры 1080p).
Благодаря возможности настройки современных мегапиксельных камер для конкретных мест наблюдения с различным разрешением, камеры с различным разрешением могут быть объединены в одной сети.Затем основные области можно просматривать и записывать с более высоким качеством разрешения, в то время как второстепенные области просматриваются с меньшим разрешением и меньшей частотой кадров. Видеоаналитика также может применяться для запуска потоковой передачи мегапикселей только при автоматической активации; это подход, который можно использовать для экономии полосы пропускания для существующих сетевых конвейеров и для экономии места для хранения записывающего устройства.
Объяснение разрешения камеры
Несмотря на то, что гонка мегапикселей продолжается с момента изобретения цифровых фотоаппаратов, за последние несколько лет, в частности, произошло огромное увеличение разрешения — мы видели все, от 41-мегапиксельных камерофонов до 50-ти.6-мегапиксельные полнокадровые зеркальные фотоаппараты. Похоже, что мы уже достигли теоретического максимума обработки шума при высоких значениях ISO с помощью сенсорной технологии текущего поколения, поэтому производители теперь сосредотачивают свои усилия на упаковке большего разрешения, сохраняя при этом размеры сенсоров прежними, чтобы привлечь больше клиентов к обновлению. к последнему и самому большому. В этой статье я попытаюсь объяснить некоторые основные термины в отношении разрешения и, надеюсь, помогу нашим читателям лучше понять разрешение камеры.
NIKON D3S @ 500 мм, ISO 1600, 1/800, f / 8Прежде чем мы начнем, давайте сначала поговорим о том, какое разрешение влияет, а затем рассмотрим некоторые распространенные заблуждения.
1) Разрешение камеры: на что оно влияет
В цифровой фотографии разрешение камеры связано с рядом различных факторов:
- Размер отпечатка — обычно самый важный фактор. В основном, чем больше разрешение, тем больше потенциальный размер печати. Печать цифровых изображений осуществляется путем сжатия определенного количества пикселей на дюйм (PPI).Для получения высококачественной печати с хорошими деталями обычно требуется печать с плотностью около 300 пикселей на дюйм, поэтому размер потенциального отпечатка рассчитывается путем деления ширины и высоты изображения на число пикселей на дюйм. Например, изображение с разрешением 12,1 МП с Nikon D700 имеет размеры 4256 x 2832. Если вы хотите создать высококачественный отпечаток с большим количеством деталей при 300 PPI, размер отпечатка будет ограничен примерно 14,2 x 9,4 дюйма (4256/300 = 14,2 и 2 832/300 = 9,4). Возможны и более крупные отпечатки, но для этого потребуется либо понизить PPI до более низкого значения, либо использовать специальные сторонние инструменты, которые используют сложные алгоритмы для увеличения или увеличения разрешения изображения до более высокого разрешения, что не всегда дают хорошие результаты.Короче говоря, более высокое разрешение обычно более желательно для возможности печати большего размера.
- Параметры обрезки — чем выше разрешение, тем больше места для обрезки изображений. Хотя многие фотографы избегают сильного кадрирования, иногда необходимо сфокусироваться на желаемом объекте (объектах). Например, фотографы, занимающиеся спортом и дикой природой, часто прибегают к кадрированию, потому что они не могут приблизиться к действию, но в то же время не хотят, чтобы их окончательные изображения содержали ненужный беспорядок вокруг основного объекта (объектов).В результате они часто используют сильное кадрирование, что в конечном итоге снижает разрешение, поэтому они стремятся к максимально возможному и практичному разрешению.
- Понижающая дискретизация — как я ранее объяснял в своей статье о преимуществах датчиков с высоким разрешением, чем выше разрешение, тем лучше варианты изменения размера или «понижающей дискретизации» изображений. Как я объясню ниже, современные камеры с высоким разрешением имеют такую же производительность, что и их аналоги с более низким разрешением, но их основные преимущества — это возможность понижать дискретизацию до более низкого разрешения, чтобы уменьшить количество шума, а при съемке с низким ISO способность для получения отпечатков большего размера.
- Размер дисплея — за последние 10 с лишним лет мы стали свидетелями значительного прогресса в области дисплейных технологий. Мониторы, телевизоры, проекторы, телефоны, карманные компьютеры и другие устройства значительно выросли в разрешении, и увеличение пространства на этих устройствах, естественно, привело к необходимости показывать изображения с более высоким разрешением и большим количеством деталей. Мониторы и телевизоры с разрешением 4K (более 8 мегапикселей) становятся все более популярными и распространенными, что увеличивает нагрузку на камеры, чтобы получать изображения с достаточной детализацией для демонстрации на устройствах такого высокого разрешения.
Судя по вышесказанному, кажется, что чем выше разрешение, тем лучше. Но это, конечно, не так, потому что дело не только в количестве пикселей, но и в их качестве. Ниже я объясню, что это означает в отношении размера сенсора, размера пикселя, разрешающей способности объектива и техники.
2) Разрешение камеры: насколько больше X МП по сравнению с Y МП?
Когда Nikon впервые представила свои камеры D800 / D800E с полнокадровыми датчиками изображения с разрешением 36,3 МП, многие фотографы все еще снимали с 12.Полнокадровые камеры с разрешением 1 МП, такие как Nikon D700 и D3 / D3s. Путем простой математики многие утверждали, что датчик на 36,3 МП обеспечивает в 3 раза большее разрешение (12,1 МП x 3 = 36,3 МП), а некоторые ошибочно полагали, что при обновлении до камеры, такой как D800, отпечатки будут в 3 раза больше. Хотя общее количество эффективных пикселей действительно в три раза больше при сравнении 36,3 МП и 12,1 МП, разница в линейном разрешении на самом деле намного меньше. Это связано с тем, что разрешение сенсора рассчитывается путем умножения общего количества пикселей по горизонтали на общее количество пикселей по вертикали, аналогично тому, как вы вычисляете площадь прямоугольника.В случае D700, который имеет размер изображения 4256 x 2832, разрешение сенсора равно 12 052 992, что округляется до примерно 12,1 мегапикселя. Если мы посмотрим на Nikon D800, его размер изображения составляет 7360 x 4912, и, следовательно, разрешение сенсора составляет 36152320, примерно 36,15 мегапикселей (несоответствие между 36,15 и 36,3 происходит из-за того, что некоторые пиксели, такие как оптический черный и фиктивный, по краям датчика используются для предоставления дополнительных данных).
Теперь, если мы сравним общее количество пикселей по горизонтали между D700 и D800, оно составит 4256 против 7360 — увеличение всего на 73%, а не на 200%, как ошибочно полагают многие.На что это переводится? По сути, если бы вы могли распечатать подробный отпечаток 14,2 x 9,4 дюйма с разрешением 300 пикселей на дюйм с помощью D700, обновление до D800 потенциально могло бы привести к печати 24,5 x 16,4 дюйма при тех же 300 пикселей на дюйм. Следовательно, переход от 12 МП к 36 МП приведет к увеличению отпечатков на 73%, а не в 3 раза. Опять же, общую площадь легко спутать с шириной по горизонтали, поэтому важно понимать разницу здесь.
Чтобы получить вдвое больше отпечатков при том же PPI, вам нужно умножить разрешение сенсора на 4.Например, если у вас есть фотокамера D700 и вам интересно, какое разрешение сенсора вам потребуется для печати в 2 раза больше, вы умножаете 12,1 МП (разрешение сенсора) на 4, что соответствует сенсору 48,4 МП. Так что, если вы перейдете к последней цифровой зеркальной фотокамере Canon 5DS с датчиком 50,6 МП, вы получите отпечатки чуть больше, чем в 2 раза по сравнению. Чтобы понять эти различия в разрешении, лучше всего взглянуть на приведенное ниже сравнение различных популярных разрешений сенсоров современных цифровых камер из 12.От 1 до 50,6 МП:
Как видите, несмотря на то, что разрешение сенсора значительно увеличивается при переходе от примерно 12,1 МП до 50,6 МП, реальная разница в ширине по горизонтали гораздо менее выражена. Но если вы посмотрите на общую разницу в площади, то различия действительно значительны — вы можете взять 4 отпечатка с D700, сложить их вместе и все равно получиться короткими по сравнению с изображением 50,6 МП, как показано ниже:
Имейте все это в виду, сравнивая камеры и думая о различиях в разрешении.
3) Размер сенсора, размер пикселя и различия в разрешении
Как вы, возможно, уже знаете, разрешение сенсора далеко не самая важная характеристика камеры, и во многом это связано с физическим размером сенсора камеры и его пикселей. Вы можете увидеть две камеры с одинаковым разрешением, но у одной может быть датчик, который значительно больше, чем у другой. Например, Nikon D7100 имеет сенсор 24,1 МП, а Nikon D750 имеет сенсор 24,3 МП — оба имеют одинаковое разрешение сенсора.Однако, если вы посмотрите на физические размеры сенсоров на обоих, Nikon D7100 имеет размер сенсора 23,5 x 15,6 мм, а сенсор на Nikon D750 имеет размеры 35,9 x 24,0 мм — на 52% больше по линейной ширине или в 2,3 раза. больше по общей площади сенсора. Что это значит? Несмотря на то, что обе камеры дают изображения одинаковой ширины (6000 x 4000 на D7100 против 6016 x 4016 на D750), физический размер каждого пикселя на сенсоре D750 для сравнения на 52% / 1,52 раза больше. Таким образом, две камеры могут иметь одинаковое разрешение и, следовательно, потенциально могут делать отпечатки одинакового размера (подробнее об этом ниже).
Если мы разделим ширину сенсора на ширину изображения, мы сможем вычислить приблизительный размер каждого пикселя. В случае с D7100, если взять 23,5 и разделить на 6000, получится примерно 3,92 мкм, тогда как разделение 35,9 на Nikon D750 на 6016 даст размер пикселя примерно 5,97 мкм.
Итак, какое значение имеет размер пикселя в изображениях? По сути, более крупные пиксели могут собирать больше света, чем пиксели меньшего размера, что приводит к лучшему качеству изображения и обработке шума на пиксель. Однако есть несколько предостережений, о которых следует помнить:
- Различия невелики при большом количестве света (низкие уровни ISO) — при съемке, близкой к базовым значениям ISO, таким как ISO 100-400, обычно небольшая разница в шумовых характеристиках между пикселями (разница в размере пикселей составляет до 2x, но не больше).В случае с D7100 и D750 оба дают практически бесшумные изображения от ISO 100 до 400. Однако есть заметная разница в производительности при более высоких ISO, начиная с ISO 800, в пользу D750. Таким образом, более крупные пиксели, как правило, больше подходят для условий слабого освещения, где часто используются более высокие уровни ISO.
- Если размер сенсора такой же, но разрешение другое, меньшие пиксели не обязательно приводят к большему шуму — сенсор с большим разрешением означает, что вы можете печатать с большим размером.Поскольку шум обычно оценивается не на попиксельной основе, а на эквивалентных размерах печати, вам придется печатать с одинаковым размером, чтобы оценить шум от двух датчиков с разным разрешением. Например, Nikon D750 имеет сенсор на 24,3 МП, а новый Nikon D810 имеет сенсор на 36,3 МП. Поскольку у D810 большее разрешение, размер пикселя заметно меньше, чем у D750 (4,88 мкм против 5,97 мкм), а это означает, что ожидается больше шума при увеличении изображения до 100%. Однако, если бы мы сделали отпечатков эквивалентного размера из , нам пришлось бы изменить размер изображений с D810, чтобы они соответствовали размеру печати D750, уменьшив 36.От 3 до 24,3 МП, что при том же размере печати будет показывать аналогичный шум. Взгляните на приведенные ниже изображения с обеих камер, размер изображения D810 изменен до 24,3 МП (слева: Nikon D750, справа: Nikon D810, ISO 1600): Как видите, оба изображения выглядят очень похожими с точки зрения шума, хотя Технически предполагается, что D810 будет иметь более заметный шум из-за меньшего размера пикселей. Если бы я заменил D750 на 16-мегапиксельную Df или D4s, полученные изображения были бы похожи на 16-мегапиксельную.
Учитывая вышеизложенное, как будет сравниваться изображение с камеры телефона Nokia 808 PureView с разрешением 38 МП и изображения с камеры 36.3-мегапиксельная полнокадровая зеркальная камера Nikon D810? Что ж, здесь просто нет сравнения, поскольку мы говорим о небольшом сенсоре размером 13,3 x 10,67 мм на телефоне по сравнению с 35-миллиметровым сенсором DSLR размером 35,9 x 24 мм — разница в 270% по ширине сенсора или в 6 раз по общей площади. Таким образом, несмотря на то, что Nokia 808 технически имеет более высокое разрешение, чем D810, размер его пикселя составляет жалкие 1,4 мкм по сравнению с 4,88 мкм на D810, что делает изображения с камеры телефона похожими на грязь по сравнению с изображениями с D810. .Хотя Nokia 808 PureView потенциально может делать более крупные отпечатки, D810, очевидно, будет производить гораздо более качественные отпечатки с большей детализацией, потому что общая система камеры способна использовать преимущества полного датчика 36,3 МП, тогда как реальное разрешение телефона Nokia намного хуже. в сравнении. Это показывает, что разрешение и печать — это гораздо больше, чем просто мегапиксели. Теперь перейдем к резкости и разрешающей способности линз.
ILCE-7M2 + FE 24-70 мм F4 ZA OSS @ 70 мм, ISO 6400, 10/1, f / 5.64) Резкость объектива / разрешающая способность
Большие числа мегапикселей на датчике бесполезны, если объектив слишком плохой, чтобы разрешить достаточно деталей, чтобы предоставить данные для каждого пикселя на датчике. Тот же Nokia 808 PureView может иметь разрешение 38 МП, но сколько деталей он может отображать на уровне пикселей по сравнению с 36-мегапиксельным D810 с прикрепленным к нему твердым полнокадровым объективом? Не очень много. Таким образом, его реальная производительность с точки зрения разрешения намного меньше, чем 38 МП, на самом деле ближе к 5 МП для сравнения, а может быть, даже меньше.Это имеет смысл, потому что вы не можете сравнивать камеру с небольшим сенсором и крошечным объективом с полнокадровой зеркальной камерой и высококачественным объективом с потрясающей разрешающей способностью. Еще одна проблема — дифракция — камеры с меньшими сенсорами будут ограничены дифракцией при гораздо большей апертуре, что также эффективно снизит резкость и эффективное разрешение.
При сравнении камер с сенсором одинакового размера с разным разрешением вы должны помнить, что камера с большим разрешением всегда увеличивает нагрузку на объектив с точки зрения разрешающей способности.Объектив может неплохо справиться с камерой 12 МП, но не сможет разрешить достаточно деталей на камере с разрешением 24 или 36 МП, по сути, отбрасывая преимущество высокого разрешения. В некоторых случаях вам может быть лучше не переходить на камеру с более высоким разрешением, чтобы меньше заниматься другими проблемами, такими как необходимость большего объема памяти и вычислительной мощности.
Хотя такие производители, как Nikon и Canon, активно выпускают объективы, специально разработанные для датчиков с более высоким разрешением, вам, возможно, придется переоценить каждый объектив, приобретенный в прошлом, чтобы увидеть, какие из них обеспечат адекватную разрешающую способность для датчика высокого разрешения, а какие. нужно будет заменить.Во многих случаях старые объективы будут страдать от плохой работы в середине и в углах кадра, что может быть нежелательно для определенных типов фотографии, таких как пейзажи и архитектура.
FUJIFILM X-PRO1 @ 35 мм, ISO 200, 1/90, f / 5,65) Технические навыки
У вас может быть камера с самым высоким разрешением на рынке и лучший объектив, способный в полной мере использовать преимущества матрицы и по-прежнему получаются плохо выполненные изображения, в которых отсутствуют детали для получения отпечатков хорошего качества. Помимо возможности использовать хорошее освещение и тщательно кадрировать / скомпоновать сцену, вам также необходимо обладать хорошими техническими навыками, чтобы получать четкие изображения.Камеры с высоким разрешением существенно «усиливают» все, будь то дрожание камеры, вызванное неправильной техникой удержания рук, вибрация затвора, исходящая от камеры, плохая техника фокусировки, неустойчивый штатив, слабый ветер или другие различные причины размытия изображений.
Итак, если вы все же решите перейти на датчик с гораздо более высоким разрешением, вам может потребоваться некоторое время на изучение правильной техники захвата изображений. Возможно, вам придется пересмотреть минимальную выдержку затвора для работы в руке, использования штатива, использования live view для критической фокусировки, использования линз и оптимальной диафрагмы и т. Д.Потому что, если вы этого не сделаете, вы можете зря тратить потенциал сенсора камеры …
В следующей статье мы рассмотрим вопрос о том, какое разрешение вам действительно нужно, путем анализа существующих данных и рассмотрения других соображений, касающихся повышается в разрешении камеры.
Общие сведения о разрешении цифровой камеры
Общие сведения о разрешении цифровой камерыЗнакомство с цифровой камерой разрешение
Термин «Разрешение», когда он используется для описания цифровой камеры, означает размер цифрового изображения, создаваемого камерой, и обычно выражается в «мегапикселей» или сколько миллионов пикселей он может записать в одно изображение.
Для Например, камера с разрешением 1600 x 1200 пикселей создает изображение с разрешение 1,92 миллиона пикселей и будет называться 2,0 мегапикселем камера. Вы получите 1,92 миллиона пикселей, умножив вертикаль на горизонтальные размеры. Затем это число округляется до 2 для маркетинга. целей.
Подробнее разрешение означает лучшее качество — до определенного предела! И оптика, и качество микросхемы захвата изображения тоже играют роль.
Преимущество камеры с более высоким разрешением в том, что у вас больше пикселей для работы. Это большой плюс при получении распечаток.
Помните, вы можете сделать распечатку практически с любого изображения, но чем больше у вас чтобы взорвать его, тем больше вы ухудшите качество.
Компьютер мониторы отображают изображения с разрешением 72 ppi (пикселей на дюйм), то есть 72 пикселей на дюйм. пикселей на каждый 1 дюйм линейного экранного пространства, которое вы видите на экране.
Следовательно, если у вас есть изображение на экране шириной 720 пикселей, оно займет 10 дюймов линейного пространства экрана (72 dpi x 10 дюймов = 720 пикселей).
Это может красиво выглядеть на экране, но если вы попытаетесь распечатать это изображение на на принтере с разрешением 72 dpi результат будет выглядеть очень прерывистым и неровным.
Кому получите красивый отпечаток со своего принтера, вам нужно будет распечатать его с разрешением 300 ppi (пикселей на дюйм), что означает, что 10 дюймов по ширине экрана будут уменьшено до всего 2.4 дюйма на бумаге (720/300 = 2,4, или 24% от исходных 10 дюймы).
1200 пикселей 72ppi = 16,6 дюйма
Вкл. бумага с тем же изображением будет шириной 4 дюйма.
1200 пикселей 300 пикселей на дюйм = 4 дюйма
Сколько Количество пикселей изображения, которые вам нужны, зависит от размера отпечатка, который вы хотите сделать. Как Правило, вам нужно минимум 300 пикселей на каждый линейный дюйм отпечатка.Для Например, для хорошей печати размером 4 x 6 дюймов требуется 1200 пикселей по горизонтали на 1800 пикселей. пикселей по вертикали, или общее количество пикселей 2160 000, что чуть больше 2 мегапикселей.
Потому что соотношение сторон (ширина по отношению к высоте) цифровой фотографии составляет 4: 3, что отличается от традиционных размеров кадра, показанных в таблице, ваша камера вероятно, не предлагает конкретные размеры пикселей, указанные в таблице.Пока поскольку ваша камера имеет количество пикселей, которое равно или превышает числа показано здесь, вы будете настроены на хорошее качество печати.
Размер печати (300 пикселей на дюйм или 150 пикселей на дюйм) | Разрешение пикселей | Технические характеристики камеры |
4 х 6 | 1200 х 1800 | 2-мегапиксельные камеры и выше |
5 дюймов x 7 дюймов | 1500 х 2100 | 3-мегапиксельные камеры (2048 x 1536) и вверх |
6 х 8 | 1800 х 2400 | 5-мегапиксельная (2592 x 1728) и выше |
7 х 10 | 2100 х 3000 | камеры с разрешением 6 мегапикселей и выше |
8 х 10 | 2400 х 3000 | 8 мегапикселей и выше |
11 х 14 | 3300 х 4200 | 12 мегапикселей и выше |
Простое руководство по пониманию разрешения камеры
Чаще всего производители фотоаппаратов продают свою продукцию с их мегапикселями.
Действительно, среднее разрешение цифровых фотоаппаратов постоянно увеличивается.
В смартфонах есть датчики с разрешением 20 МП. С Sony A7R IV вы даже можете делать фотографии с разрешением 240 МП, сдвигая сенсор.
а что для вас значит разрешение камеры? Вам нужно большое количество мегапикселей? Сегодня узнаем.
[ Примечание: ExpertPhotography поддерживается читателями. Ссылки на продукты на ExpertPhotography являются реферальными. Если вы воспользуетесь одним из них и что-то купите, мы заработаем немного денег.Нужна дополнительная информация? Посмотрите, как это все работает. ]
Почему имеет значение разрешение камеры?
Попробуем разобраться в маркетинговых лозунгах. Мегапиксель и разрешение камеры стали лозунгами.
Это действительно здорово, что даже ваш телефон способен снимать 20-мегапиксельные фотографии. Но как это перевести на реальные детали? Не так хорошо.
И что еще важнее, оно вам нужно?
Очень общий ответ — нет; вы, вероятно, не знаете.
Есть два приложения, в которых требуется высокое разрешение: обширное кадрирование (цифровое масштабирование) и крупная печать. И даже в таких ситуациях вам потребуется детализации , не обязательно большое количество мегапикселей.
Что такое количество пикселей?
Разрешение камеры не равно количеству пикселей, хотя они часто смешиваются и используются как взаимозаменяемые. Фильм также имеет разрешение — это относится к уровню детализации, который он может разрешить.
Пиксели — это самый маленький компонент сенсора цифровой камеры.Они записывают свет. Их миллионы — один за другим, и они создают целостный образ.
Их количество важно, но не все говорит о разрешении камеры.
Количество пикселей в мегапикселях. Один мегапиксель (МП) равен одному миллиону пикселей. Итак, когда кто-то говорит, что у камеры разрешение камеры 20 МП, они имеют в виду 20 миллионов пикселей на ее датчике.
Действительно, количество пикселей ограничивает степень детализации изображения. Но сам по себе он не устанавливает минимального уровня детализации.Это ничего не значит, пока мы не узнаем другие факторы.
Единственное, что обещает большое количество пикселей, — это уменьшение муара.
Расчет размера изображения в пикселях
Датчики камеры прямоугольные. Пиксели на них не разбросаны случайным образом — они находятся в сетке.
Размеры двух сторон сопоставимы. Их соотношение сторон варьируется от 1: 1 (квадрат) до 16: 9 в некоторых видеокамерах.
Наиболее часто используемые форматы изображения — 3: 2 и 4: 3.
Например, мой Canon 5D MkIII имеет соотношение сторон 3: 2. Его сенсор измеряет 5760 пикселей по длинной стороне и 3840 пикселей по короткой стороне.
Вы можете умножить две стороны, чтобы получить общее количество пикселей. 5760 x 3840 равно 22 118 400. (Итак, 5D MkIII имеет датчик 22,1 МП.)
Я все еще могу добиться другого соотношения сторон, но только путем кадрирования. То же самое делает камера, когда я устанавливаю другое соотношение сторон в меню. Обрезка снижает разрешение.
Изображение hongkha с сайта PixabayWhat Is Camera Resolution?
Когда мы говорим о разрешении в контексте камер, мы имеем в виду пространственное разрешение. Это технически правильный термин, но, вероятно, вы читали его в первый и последний раз.
Разрешение камеры говорит нам об уровне детализации, который могут обеспечить камеры. Другими словами, это «способность визуализации различать два объекта» (Википедия).
Разрешение зависит от нескольких факторов.
Если записывающая поверхность является пленкой, это определяется по:
- Размер пленки. Видно, с большим размером приходит больше детали
- Уровни зерна. Пленки с более низким ISO обычно имеют меньшее зерно и, следовательно, обеспечивают более чистое и детальное изображение.
- Резкость объектива. Какой бы большой и бесшумной ни была пленка, если в камере используется некачественный объектив, разрешение камеры останется низким.
- Дифракция. Значение относительной диафрагмы (диафрагма) ограничивает размер самой маленькой единицы детализации. Однако он всегда присутствует в той или иной степени.
В эпоху цифровых датчиков это немного меняется на:
- Шаг пикселя. Плотность пикселей на сенсоре. Также дает довольно точное измерение размера пикселя;
- Размер сенсора,
- ISO,
- Резкость объектива,
- И дифракция.
Кроме того, внешние обстоятельства также влияют на четкость изображения.
- Фокус. Если изображение расфокусировано, оно не будет таким детальным, как могло бы быть.
- Дрожание камеры и размытость изображения. В зависимости от выбранной выдержки на фотографии может появиться размытость изображения или даже дрожь. Это снижает разрешение, особенно при фокусных расстояниях телефото и большом количестве пикселей.
- Атмосферное размытие. Если вы фотографируете объект со значительного расстояния, сама атмосфера начинает оказывать негативное влияние на детализацию. Это влияние наиболее заметно на телеобъективах. Также сказываются туман, дождь и другие погодные явления.
- Состояние оборудования. У вас может быть самый резкий объектив в мире, но если вы не будете содержать его в чистоте, он не будет работать в лучшем виде. Кроме того, после резких перепадов температуры на линзах может образовываться конденсат. Это приводит к нечеткому изображению.
Давайте обсудим некоторые из них подробнее.
Шаг и размер пикселя
Само собой разумеется, что меньшие пиксели требуют от объектива лучшего оптического качества.
Пиксель размером 8 мкм (микрометр) имеет в четыре раза большую площадь и в два раза больший шаг пикселя, чем пиксель 4 мкм.
Это означает, что если объектив достаточно резкий, чтобы обеспечить детализацию пикселей 8 мкм, он не сможет обеспечить достаточную резкость для пикселей 4 мкм.
А где можно найти маленькие пиксели?
В двух местах:
- Большие сенсоры с очень большим количеством пикселей. Canon 5Ds R имеет шаг пикселя около 4 мкм. Это полнокадровая камера с разрешением 51 МП.
- Меньшие датчики с нормальным количеством пикселей. В iPhone XR установлена камера на 12 МП. Но его сенсор настолько мал, что размер пикселей составляет всего 1,3 мкм. Таким образом, его пиксели в девять раз меньше пикселей 5Ds R.
В свою очередь, Canon 5D (оригинальный) имеет 12-мегапиксельную матрицу на полнокадровом сенсоре. Шаг пикселя составляет 8 мкм. Его пиксели в 36 раз больше, чем пиксели на iPhone!
Меньшие пиксели также означают, что на один пиксель падает меньше света.
Однако и большие, и маленькие пиксели должны быть доведены до одного и того же уровня. В противном случае изображение, состоящее из мелких пикселей, будет намного темнее.
Это приводит к большему шуму, потому что, делая изображение ярче, вы также увеличиваете яркость его шума.
С меньшими пикселями дифракция также более выражена. Это начинает оказывать заметное влияние на малых диафрагмах, иногда уже на f / 2.8.
Но что такое дифракция?
Что такое дифракция
Трудно объяснить дифракцию без научного подхода.Если вы специалист по физике — простите меня за упрощение.
Вы, наверное, знакомы с дифракцией в воде. Когда вы ставите преграду с небольшим отверстием на пути воды, поток изгибается возле отверстия. Чем меньше отверстие, тем больше изгиб.
То же самое и со светом. При меньших значениях диафрагмы (более высокие значения диафрагмы) дифракция ухудшает резкость и разрешение.
Из-за дифракции существует очень измеримый физический предел разрешения. Независимо от того, насколько хорош ваш объектив, это всегда правда.Дается по этой формуле:
p = (1,22 λ A) / 2
Здесь p — наименьший пиксель, который может получать информацию на уровне пикселей от объектива. λ — длина волны падающего света, а A — диафрагма.
Давайте посчитаем с камерой iPhone XR. Мы полностью открываем диафрагму до f / 1.8, чтобы получить наименьшее количество дифракции.
Длина волны видимого света составляет около 0,5 мкм.
p = (1.22 * 0,5 мкм * 1,8) / 2
Получающееся p равно 1,1 мкм .
Это означает, что iPhone XR (с шагом пикселя 1,3 мкм) очень близок к дифракционному ограничению.
Итак, даже если объектив оптически идеален, без каких-либо аберраций, он на высоте. Он не поддерживает пиксели меньшего размера.
Другой пример.
При диафрагме f / 16 результат p составляет 7,3 мкм. Это означает, что камеры с шагом пикселя около этого значения подвержены дифракции только выше f / 16.
Итак, исходный 5D с шагом пикселя 8 мкм получает дифракционное ограничение только после f / 16.
Это совпадает с моим опытом. Когда я использую старый 5D, я стараюсь уйти даже с f / 16 без снижения резкости. На 5D MkIII и MkIV это больше похоже на f / 11 и f / 9.
Взгляните на эту иллюстрацию, которую я снял с помощью Canon 5D MkIV и макрообъектива Canon 100mm f / 2.8L. Оба кадра идеально сфокусированы; смягчение происходит из-за дифракции.
Влияние дифракции на разрешениеКак резкость объектива влияет на разрешение?
Итак, чтобы дифракция не представляла угрозы для разрешения изображения, на большинстве камер необходимо поддерживать значение f / 8 или ниже.
Но широкая диафрагма также может ухудшить резкость — особенно с более дешевыми объективами, но объективы обычно не работают с максимальной диафрагмой.
Обратите внимание, что здесь я говорю только о резкости, а не о других аспектах эстетики изображения. Резкость — важное качество объектива, но не решающий фактор, по крайней мере, для меня.
Отличным показателем резкости объектива являются диаграммы MTF. Они показывают разрешение объектива независимо от размера сенсора и количества пикселей.
Но вы можете проверить свои линзы и в реальной жизни. В конце концов, если они для вас достаточно острые, можно идти.
Верхний предел резкости объектива — резкость на уровне пикселей. Это означает, что линза настолько резкая, что может разрешить данные изображения до каждого пикселя, не затрагивая соседний пиксель.
Это зависит не только от объектива, но и от шага пикселей камер, на которых вы его используете.
Мой объектив 85 мм f / 1.8 достаточно резкий, чтобы обеспечить резкость на уровне пикселей на 12-мегапиксельном Canon 5D.
Не так много на 30-мегапиксельном Canon 5D MkIV, но там он все равно неплохо работает. И мне все равно нравится этот объектив.
Это также доказывает, что пиксели меньшего размера требуют большего от линз.
Обратите внимание: когда вы просматриваете оба изображения одинакового размера (скажем, на мониторе), вы не заметите разницы. Вы увидите это, только когда изучите их в увеличенном масштабе.
Что вызывает размытие атмосферы?
Все мы знаем, что, проходя сквозь стекло, свет преломляется. Но это не только сверхъестественная сила стекла.
Свет преломляется в любом веществе, включая воздух.
На коротких расстояниях этого не замечаешь. Это становится очевидным, когда вы снимаете удаленные объекты с помощью телеобъектива.
Взгляните на это фото. Я снимал его с помощью объектива 400 мм f / 2,8 (я знаю, что это немного избыточно для этой задачи) при f / 8. Ближайшие здания находятся в 5 км, поэтому все в центре внимания. Но обратите внимание на разницу между зданиями на переднем плане и холмами на заднем плане.
Передний план красивый и резкий.Достаточно близко, чтобы на него не влияло атмосферное размытие.
Холмы более чем в три раза дальше от камеры. На таком расстоянии свет начинает расщепляться. Разные длины волн смещаются по-разному. Этот сдвиг вызывает размытие.
Смягчающий эффект атмосферного размытия. Снято на объектив 400 мм, оба фрагмента идеально сфокусированыКак добиться максимального разрешения
Так вот, я не скажу идти и покупать самую высокую мегапиксельную камеру, какую только можно найти.Количество мегапикселей и пикселей, как я упоминал ранее, ничего не значат без соответствующих настроек и техники их поддержки.
Важно отметить, что очень часто ваша цель не состоит в том, чтобы уловить максимальное количество деталей, которое вы теоретически могли бы уловить.
Фотография — это не только резкость. Речь идет о передаче истории или ощущений. Или эстетически угодить.
Тем не менее, есть приложения, в которых требуется максимальное разрешение. Возможно, вы захотите обрезать его позже («цифровое увеличение»).Для больших отпечатков также требуются изображения с высокой детализацией.
Итак, что вы можете сделать для достижения максимального разрешения с помощью вашего фотооборудования?
Знайте свой объектив. Знай свои сильные и слабые стороны. Изучите, с какими диафрагмами он работает лучше всего. Проверьте, не приводит ли фокусировка крупным планом к более размытому изображению, это часто является проблемой. Проверяйте резкость при разных фокусных расстояниях во всем диапазоне увеличения.
Знайте свою камеру. Знайте уровни ISO, которые вы можете установить, не слишком сильно влияя на изображение.
Снимайте с правильной выдержкой. Поэкспериментируйте с выдержкой на всех фокусных расстояниях. Все мы знаем правило обратного фокусного расстояния, но это еще не все. Когда я фотографирую людей, я стараюсь не медленнее, чем 1/400, чтобы заморозить движение. (Если мне не нужен творческий эффект размытия движения.)
Настройте его правильно. Установите полное соотношение сторон и наилучшее качество JPG. Или просто установите RAW, чтобы у вас было больше возможностей при постобработке. Также проверьте настройки резкости в камере.Он не дает больше, но подчеркивает существующие детали. Однако чрезмерная резкость может повредить детали на фотографии.
Очистите камеры и объективы. Убедитесь, что в нем мало или нет пыли. Если на линзе появился грибок, удалите ее. Очистите датчик.
Проверьте свои фильтры. Если вы используете фильтры, убедитесь, что они не ухудшают качество изображения. Некоторые более дешевые фильтры, как правило, снижают резкость.
Точная фокусировка. Осуществляйте автофокусировку, заставляйте ее вести себя так, как вы хотите.При необходимости выполните микронастройку автофокуса. Помните о смещении фокуса в вашем объективе и сфокусируйтесь соответственно. Если вы снимаете устойчивые объекты на штативе, используйте ручную фокусировку.
Помните о внешних обстоятельствах. Туманные дни, хотя и многообещающие для творческой фотографии, не помогают резкости.
Помните о дифракции. Проверьте шаг пикселя на камере и постарайтесь избегать диафрагмы, на которую влияет дифракция.
Разрешение и обрезка
Основная причина для съемки изображений с высокой детализацией — это возможность обрезки позже.
Это дает вам гибкость и творческую свободу. Вы можете изменить свою композицию, ваш главный объект, ваш фокус и передать что-то еще, обрезая.
Обратите внимание, что «цифровое масштабирование» — это тот же процесс, что и кадрирование, но оно происходит в камере, без возможности последующего раскрытия обрезанных частей. Я рекомендую избегать цифрового зума. Вместо этого обрежьте изображения во время постобработки.
Не люблю снимать с зумом. Я ценю дополнительный свет над универсальностью.Поэтому в путешествиях я часто ношу с собой объективы 24 мм и 85 мм.
В большинстве случаев я меняю кадрирование, приближаясь к объективу 24 мм. Это также дает перспективу, которая мне больше нравится.
Однако на фотографии ниже мне пришлось кадрировать позже. Я не мог подойти ближе. Честно говоря, мне нравятся обе версии одинаково, но в кадрированном изображении больше внимания уделяется мальчику, а не окружающему.
Я мог это сделать, потому что у меня было достаточно разрешения.
Снято в Скопье, Северная Македония, на Canon 5D MkIII и 24 мм f / 1.4 II с выдержкой 1/400 с, f / 2.Как избежать пикселизации при масштабировании
Масштабирование или увеличение небольших изображений редко дает желаемый результат. Adobe Photoshop и другие программы для редактирования предлагают алгоритмы, позволяющие сделать увеличенные фотографии менее пиксельными, но результат далек от резкости.
Однако за последние несколько лет возможности стали намного сложнее. Это связано с появлением и развитием алгоритмов машинного обучения.
ИнструментPhotoshop значительно улучшился, но есть веб-службы для расширенного масштабирования.
Посмотрите это видео от PiXimperfect, чтобы узнать о них больше.
Также примите во внимание предыдущие пункты. Снимок с резкостью, близкой к пиксельной, легче масштабировать, чем размытую и мягкую.
Разрешение и печать
Другая причина для изображений с действительно высоким разрешением — печать.
Я не имею в виду печать дома на принтере, который вы используете для печати документов.
Я имею в виду профессиональную фотопечать, журналы, книги и плакаты.
Печать работает аналогично работе с цифровыми изображениями. Принтеры рисуют на бумаге крошечные точки — эти точки являются мельчайшей единицей детализации при печати.
Цифровые пиксели можно напрямую преобразовать в точки. И точно так же, как пиксели, точки также мало что говорят о деталях.
Однако службы печати запрашивают файлы с определенными размерами пикселей. Это связано с тем, что они предполагают, что отправляемые вами файлы содержат информацию на уровне пикселей и являются подробными.
Во время печати вы столкнетесь с новой единицей измерения: DPI.Это означает точек на дюйм.
DPI показывает, насколько плотно точки напечатаны на бумаге. Чем они плотнее, тем более детальным может быть принт.
Журналы, книги и мелкие печатные издания обычно хорошо смотрятся при разрешении более 300 точек на дюйм.
Плакаты, печать большего размера выполняется с немного меньшей плотностью точек. Это связано с тем, что часто не хватает разрешения для 300 точек на дюйм.
Расчет размера отпечатка
Предположим, вам нужен размер отпечатка 8 x 10 дюймов.Это стандартный формат среднего размера.
Просто умножьте желаемый DPI (в данном случае 300 DPI) на длину сторон.
Оказывается, для этого отпечатка вам нужно отправить изображение размером 2400 x 3000 пикселей.
Если перевести это в мегапиксели, это немного: всего 7,2 МП.
А теперь посчитаем наоборот. Если я использую полное количество пикселей на моей камере с разрешением 22,1 мегапикселя, какой размер я могу печатать с разной плотностью?
Размер изображения 5760 x 3840.У них соотношение сторон 3: 2. Посмотрим размеры:
точек на дюйм | |
---|---|
600 точек на дюйм | {{имя-столбца-2}}: 9,6 «x 6,4» |
300 точек на дюйм | {{имя-столбца-2}}: 19 «x 13» |
200 точек на дюйм | {{имя-столбца-2}}: 29 дюймов x 20 дюймов |
100 точек на дюйм | {{имя-столбца-2}}: 58 дюймов x 38 дюймов |
10 DPI | {{имя-столбца-2}}: 14 x 10 м |
Разрешение и цифровое использование
Цифровой дисплей изображений не требует большого разрешения.
Изображения, которые вы найдете на веб-сайтах, крошечные. Например, на нашем сайте мы используем изображения, длина которых составляет 700 пикселей.
Этого достаточно, чтобы увидеть, что изображено на картинке. Но он также достаточно мал, чтобы загружаться быстро.
Полное разрешение мониторов и телевизоров тоже ненамного больше. Самыми популярными размерами дисплеев являются HD и FullHD, причем 4K набирает все большую популярность.
Но что именно?
HD означает 1280 x 720 или 1366 x 768 пикселей.Это около 1 мегапикселя!
FullHD вдвое больше, имеет разрешение 1920 x 1080 пикселей. Это 2 мегапикселя.
4K — это значительный шаг вперед, он в четыре раза больше, чем FullHD, с разрешением около 3840 x 2160. Это близко к 8 мегапикселям.
Дисплеи с более высоким разрешением встречаются редко.
Фото дизайн-эколог из PexelsЗаключение
Итак, вам нужно высокое разрешение?
Если да, то теперь вы также знаете, что детализация и разрешение не сводятся только к мегапикселям. Фотографии в высоком разрешении способствуют и другие технические и человеческие факторы.
Надеюсь, теперь вы можете добиться максимально резкого изображения с помощью фотоаппарата.
Удачи и спасибо, что прочитали ExpertPhotography!
Страница не найдена »ExpertPhotography
404 — Страница не найдена» ExpertPhotography404
Простите! Страница, которую вы искали, не найдена…
Он был перемещен, удален, переименован или, возможно, никогда не существовал. Пожалуйста, свяжитесь с нами, если вам понадобится помощь.
Мне нужна помощь с…
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1 ‘, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
Страница не найдена »ExpertPhotography
404 — Страница не найдена» ExpertPhotography404
Простите! Страница, которую вы искали, не найдена…
Он был перемещен, удален, переименован или, возможно, никогда не существовал. Пожалуйста, свяжитесь с нами, если вам понадобится помощь.
Мне нужна помощь с…
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1 ‘, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
Страница не найдена »ExpertPhotography
404 — Страница не найдена» ExpertPhotography404
Простите! Страница, которую вы искали, не найдена…
Он был перемещен, удален, переименован или, возможно, никогда не существовал. Пожалуйста, свяжитесь с нами, если вам понадобится помощь.
Мне нужна помощь с…
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1 ‘, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.RealPlayer G2 Control ‘, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[‘rmockx.RealPlayer G2 Control’, ‘rmocx.RealPlayer G2 Control.1’, ‘RealPlayer.RealPlayer ™ ActiveX Control (32-разрядный)’, ‘RealVideo.RealVideo ™ ActiveX Control (32-бит)’, ‘RealPlayer’]
[type = ‘text’]
[type = ‘text’]
[type = ‘password’]
[type = ‘password’]
[‘rmockx.