Размер матрицы все, что нужно знать
Раньше было вполне логичным, что покупая компактную камеру, вы получали небольшую матрицу, а если выбирали крупногабаритную зеркалку со сменными объективами, матрица на ней была значительно больше. Это сказывалось на качестве фотографий, поскольку чем больше матрица, тем более детализированы были изображения.
Сейчас это в принципе, тоже в какой-то мере актуально, матрица — это самая дорогая часть камеры в плане производства, и чем больше матрица, тем и камера, соответственно, дороже. Потому на дорогие камеры обычно не устанавливаются матрицы 1/2.3 дюймовые, а на дешевых, соответственно, не найти полнокадровую.
Но надо сказать, что сейчас многие производители стали предлагать компактные камеры с относительно большими матрицами, точно так же как и камеры под сменные объективы с меньшими матрицами. Так что разобраться в ситуации, пожалуй, стало сложнее. Небольшие матрицы способны отлично срабатывать в различных условиях, и даже имеют некоторые преимущества перед большими.
За последние годы и сама технология создания матриц значительно продвинулась вперед, так что сегодня большое количество предлагаемых вариантов может смутить даже опытного пользователя, что уж говорить о тех, кто приобретает первую фотокамеру. А ведь размер матрицы еще и на фокусном расстоянии сказывается, так что учитывать при выборе камеры действительно нужно очень многое.
Итак, мы решили разобраться в различных типах матриц, чтобы расставить все по местам. Но для начала нужно уточнить, как именно размер матрицы влияет на эффективное фокусное расстояние.
Фокусное расстояние
Итак, мы уже выяснили, что размер матрицы связан с фокусным расстоянием, то есть с тем, какой именно объектив подойдет вашей камере. Если вы приобретаете компактный девайс с не съемным объективом, проблема сама собой отпадает, то есть с позиции покупателя это гораздо проще. Но не просто так профессионалы выбирают именно те камеры, где объективы можно менять. Любой объектив должен иметь поле (круг) изображения или диаметр света, который существует в объективе и который покрывает размер матрицы.
Итак, встроенные или нет, объективы всегда помечены реальным фокусным расстоянием, а не эффективным фокусным расстоянием, которое вы получите при использовании на той или иной камере. Но проблема в том, что различные объективы с различной маркировкой могут в итоге обеспечить одно и то же фокусное расстояние для работы. Почему? Потому что они предназначены для разных матриц. Именно поэтому производители помимо маркировки указывают эквивалент, где основным расстоянием считается 35мм или полнокадровая матрица.
Вот — один из примеров: камера с матрицей меньше чем полнокадровая вполне может использоваться с 18-55мм объективом, но на деле фокусное расстояние, которое вы получите будет ближе к 27-82мм. Это все происходит потому, что матрица не достаточно велика, чтобы использовать объектив точно так же как смог бы полнокадровый. Из-за того, что периферическое пространство внутри объектива не принимается в расчет, получается тот же эффект как от использования объектива с большим фокусным расстоянием.
В компактных камерах может был установлен 19мм объектив, но из-за размера матрицы, который меньше фуллфрейма, вы получите в итоге большее фокусное расстояние, около 28мм. Точная длина определяется кроп-фактором, то есть числом, на которое нужно увеличить данное под фуллфрейм фокусное расстояние, чтобы выяснить какое расстояние получится на той или иной камере.
Размеры матриц
1/2.3 дюйма
Размер такой матрицы примерно 6.3 x 4.7 мм. Это — самая маленькая матрица, которую можно найти в современных камерах, и чаще всего — в бюджетных компактных моделях. Разрешение такой матрицы составляет, как правило, 16-20 Мп.
По крайней мере такой расклад был самым популярным какое-то время назад. Сегодня многие производители стали делать больший упор на любительские фотоаппараты с большими матрицами, так что и размер такой не так распространен как ранее.
Однако, преимущество в том, что такой размер позволяет получить компактную камеру и использовать ее с длиннофокусными объективами, например компактными суперзумами.
При хорошем освещении такие камеры могут предоставить неплохой результат, но для более придирчивых фотографов они точно не подойдут, поскольку при низкой освещенности будут зернить.
1/1.7 дюймов
Размер этих матриц 7.6 x 5.7мм. С такой матрицей гораздо проще выделить объект съемки из фона, и соответственно, производительность в плане деталей как в тени, так и на свету. Так что использовать их можно уже в более разнообразных условиях. Раньше такие камеры были самыми распространенными среди любителей, но сейчас их место стремительно занимают дюймовые матрицы, о которых речь и пойдет дальше.
А вот 1/1.7 дюймовые матрицы используются в некоторых относительно устаревших камерах Q-серии Pentax.
Дюймовые матрицы
Размер дюймовой матрицы 13.2мм x 8.8мм. Сегодня такие матрицы очень популярны на различных типах камер, размер позволяет им оставаться легкими и компактными. Логично, что самый популярный способ применения для дюймовой матрицы — это карманные любительские камеры, на которых объектив будет лимитирован 24-70мм или 24-100мм (если брать эквивалент 35мм). Однако, на некоторых суперзум камерах он тоже используется?, примеры — это Sony RX10 III и Panasonic FZ2000.
Гораздо лучше дюймовая матрица нам знакома по камерам Nikon серии 1, например Nikon 1 J5 — отличной и легкой камере, которая способна делать отличные фото и снимать 4К видео. Такую матрицу можно встретить даже среди смартфонов — Panasonic CM1.
Камеры с дюймовой матрицей способны показать результаты, значительно отличные от предыдущих вариантов. Качество их будет высоким, а даже компактные камеры, как правило, имеют широкую максимальную апертуру, так что на матрицу попадает достаточно света, потому и фотографии выходят четкими и резкими.
Частично, это результат технологии, а не только размера матрицы. Матрицы современного производства могут более эффективно захватывать свет.
Микро 4/3
Матрица микро 4/3 имеет физический размер 17.3 x 13мм. Этот формат используется в компактных зеркалках и беззеркалках Olympus и Panasonic. Они ненамного больше по размеру, чем дюймовые матрицы, но меньше чем APS-C, речь о которых пойдет ниже.
По сути, микро 4/3 — это четверть размера полнокадровой матрицы, так что считать для нее активное фокусное расстояние предельно просто: достаточно умножить фокусное расстояние на 2.
Иными словами, 17мм объектив на камере с матрицей микро 4/3 обеспечит фокусное расстояние такое же, как 34мм объектив на полнокадровой матрице. По аналогии, 12-35мм даст 24-70мм и так далее.
На камере Lumix DMC-LX100 используется матрица микро 4/3 разрешением 12.8 Мп. Это — одна из компактных цифровых камер, которые обладают большим количеством функций и небольшим размером. Камера оснащена объективом Leica с фокусным расстоянием 24-75мм.
APS-C
Средний физический размер такой матрицы 23. 5 x 15.6мм. Такая матрица используется на зеркальных камерах для начинающих и любительских камерах, а сейчас и на многих беззеркалках. Матрица APS-C обеспечивает отличный баланс между качеством изображения, размером и вариативностью в плане совместимости с различными объективами.
APS-C доступны на некоторых компактных камерах, например Fujifilm X100F, это обеспечивает высокое качество для фотографий на портативных камерах, особенно в комплекте с объективами с постоянным фокусным расстоянием.
APS-H
Размер матриц APS-H как правило равен 26.6 x 17.9мм. Сегодня этот формат практически не встречается, и ассоциируется только с устаревшими моделями Canon EOS-1D (EOS-1D Mark III и Mark IV). Сейчас, правда, в этой серии используются фуллфреймы.
Поскольку APS-H больше чем APS-C, но меньше полнокадровой матрицы, кроп-фактор, соответственно равен 1.3х, потому 24мм объектив обеспечит на такой камере фокусное расстояние приблизительно 31мм.
Одна из последних фотокамер, где можно встретить такую матрицу — это Sigma sd Quattro H. Однако и Canon решили не отказываться от APS-H совсем, и предпочли применить эту матрицу для камер наблюдения, а не для зеркальных фотоаппаратов.
Фуллфрейм
36 x 24мм она же фуллфрейм, она же полнокадровая матрица и она же примерно такая же по размеру как негатив пленочной фотографии. Используются полнокадровые матрицы на любительских и профессиональных камерах и считаются самым удобным вариантом для съемок. Размер такой матрицы позволяет ей принимать на себя больше света, вследствие чего и фото получаются выше по качеству чем с меньшими матрицами. Соответственно, и когда речь идет о количестве пикселей, выбор больше. А разрешение полнокадровых матриц варьируется от 12 до 50Мп.
Кроп-фактор, конечно, в случае с полнокадровой матрицей значения не имеет, так как маркировка объектива будет соответствовать активному фокусному расстоянию. Однако же, некоторые объективы, созданные под APS-C матрицы все равно можно использовать с фуллфреймами, но разрешение будет ограничено (камера обрежет углы, чтобы избежать виньетирования). Но проверять совместимость, разумеется, нужно всегда, иначе есть риск повредить зеркало.
Средняя (медиум) матрица
44мм x 33мм — размер такой матрицы. Это, очевидно, больше фуллфрейма и с момента появления такие матрицы вызвали оживленный интерес и дискуссии. Они использованы в камерах Fujifilm GFX 50S, Hasselblad X1D и Pentax 645Z, последняя немного старше остальных. Применяются они в основном, исключительно профессиональными фотографами в силу цены таких камер и их специфики.
Не факт, что на этом развитие матриц как таковых остановится, но пока что это — все доступные на рынке типы матриц, а какая подойдет для ваших фото интересов, решать только вам.
Физический размер матрицы фотоаппарата
Так как матрица (фотосенсор) состоит из множества пикселей, то физический размер матрицы фотоаппарата зависит от размеров самого пикселя и их количества, то-есть от разрешения матрицы. А вот размер пикселя зависит от того, какую чувствительность от него требуют. Ведь чем больше размер пикселя, тем больше света он соберет и тем больше будет его светочувствительность и отношение сигнал-шум. Получается, что на больших по размеру фотосенсорах меньше шума и больше светочувствительность, поэтому и такая разница в цене.
Влияние на кроп-фактор и ГРИП
Разные размеры фотосенсора определяют и значение кроп-фактора. Числовое значение кроп фактора получается из отношения диагонали кадра 35 миллиметровой пленки к диагонали матрицы. Чем меньше матрица, тем меньше её диагональ и значит кроп-фактор больше. Значение кроп-фактора влияет на эквивалентное фокусное расстояние, а ЭФК в свою очередь влияет на ГРИП.
Вляние физической величины матрицы на ГРИП происходит по законам оптики. При проведении опыта брали три фотоаппарата и делали снимки при полностью одинаковых настройках, но с тремя разными по размеру фотосенсорами.
И в итоге ГРИП (резкость предметов на разном удалении от фотокамеры) был больше у фотоаппарата с наименьшей матрицей, то есть все предметы были в резкости. А у фотоаппарата с большими матрицами ГРИП был меньше.
Это важно когда вы делаете снимки с размытым фоном. Если на вашей фотокамере фотоэлемент с маленькой диагональю, то будет тяжело получить размытый фон на снимке.
Обозначение матриц
Обозначают размер фотосенсора обычно как дробь дюйма. Например, 1/1. 8 дюйма. Такое значение больше реальной диагонали матрицы, для которой это обозначение применяется.
Это обозначение прижилось еще в 50-х годах прошлого века. Тогда это значение применялось для обозначения размера передающей трубки (круглой), которая называлась «видикон». С тех пор и называются эти дюймы — «видиконовские». Тогда было установлено, что полезное изображение по диагонали примерно равно 2/3 диаметра трубки. Потому что прямоугольное изображение помещалось в кругу передающей трубки.
Внешний вид видикона и определение диагонали
Так до сих пор и считается, что реальный размер диагонали матрицы примерно равен 2/3 от значения типоразмера выраженного в дроби дюймов (видиконовских).
Применяются таблицы соответствия значения в дюймах и соотношения сторон фотосенсора в миллиметрах.
Размер в «видиконовых дюймах» | Диагональ в мм. | Ширина в мм. | Высота в мм. | Площадь матрицы мм2 |
1/6″ | 2.67 | 1.97 | 1.47 | 2.90 |
1/4″ | 4.00 | 2.95 | 2.21 | 6.53 |
1/3.6″ | 4.44 | 3.28 | 2.46 | 8.06 |
1/3.2″ | 5.00 | 3.69 | 2.77 | 10.20 |
1/3″ | 5.33 | 3.93 | 2.95 | 11.60 |
1/2.7″ | 5.93 | 4.37 | 3.28 | 14.32 |
1/2″ | 8.00 | 5.90 | 4.42 | 26.10 |
1/1.8″ | 8.89 | 6.55 | 4.92 | 32.22 |
1/1. 7″ | 9.41 | 6.94 | 5.21 | 36.13 |
2/3″ | 10.67 | 7.87 | 5.90 | 46.40 |
1″ | 16.00 | 11.80 | 8.85 | 104.40 |
4/3″ | 21.33 | 15.73 | 11.80 | 185.60 |
Размеры матрицы могут быть указаны в спецификации как диагональ в дюймах, или можно воспользоваться значением кроп-фактора для определения диагонали, а для нахождения кроп-фактора используйте значение фокусного расстояния.
Узнать величину фотосенсора можно по коэффициенту (кроп-фактор), который показывает во сколько раз диагональ матрицы меньше диагонали кадра пленки в 35 мм. А вот для вычисления этого коэффициента можно использовать значения фокусного расстояния и эквивалентного фокусного расстояния (ЭФР). Обычно они обозначаются как две пары чисел (фокусное расстояние должно быть написано на объективе), например, F=18-55 мм. Эквивалентное фокусное расстояние так же обозначается парой чисел Feq=28-84 мм. Теперь берем соответствующие числа и делим, например, 28/18 или 84/55. В результате получим коэффициент, который мы и искали (кроп-фактор), равным 1,53. И можно воспользоваться таблицей для определения физического размера фотоэлемента. Получим, что на фотокамере используется матрица APS 23х15 мм.
Эти отношения площади различных по размеру фотосенсоров (смотрите рисунок) могут примерно показать вам, насколько реальная чувствительность будет различаться у разных фотокамер, какие будут шумы, где и почему большие габариты фотоаппарата.
Чем больше размер сенсора, тем должна быть и больше оптика для обслуживания такой матрицы, поэтому фотоаппараты с большим фотосенсором и сами по размеру больше.
Откуда берутся шумы на снимках и как их уменьшить.
Как можно почистить фотосенсор в зеркальном фотоаппарате.
Строение матрицы фотокамеры и её характеристики.
Матрица цифровой камеры.
Типы и размер матрицВыбирая цифровую камеру для микроскопа или телескопа, часто обращают внимание лишь на разрешение матрицы, т.е. количество мегапикселей. Однако это не единственный важный параметр цифровой камеры, определяющий качество полученных фотоснимков и видеороликов. По каким же признакам следует выбирать цифровую камеру, и чем они могут отличаться одна от другой?
Главным элементом цифровой камеры является ее матрица, которая, собственно, и фиксирует изображение в цифровой камере. Отметим, что также в техническом описании цифровых камер часто употребляется и термин сенсор, обозначающий то же, что и матрица. Матрица состоит из массива светочувствительных ячеек, и именно от нее зависит качество изображения, полученного с помощью цифровой камеры.
Существует два основных типа матриц: CCD (ПЗС матрицы) и CMOS (КМОП матрицы), отличающиеся по применяемой технологии. И если на рынке фотоаппаратов наиболее распространены цифровые камеры с ПЗС матрицей, то большинство моделей цифровых камер для телескопов и микроскопов имеют именно КМОП матрицу.
Чем же отличается ПЗС матрица от КМОП матрицы? Основным их отличием является то, что в ПЗС матрицах информация из ячеек считывается последовательно, в то время как в КМОП матрицах информация считывается индивидуально из каждой отдельной ячейки. По этой причине в ПЗС матрицах Вы не можете сделать следующий снимок до тех пор, пока не будет целиком сформирован предыдущий. Что же касается КМОП матриц, то благодаря применяемой технологии их можно использовать не только для фотосъемки, но и для экспонометрии и работы автофокуса. Помимо этого, КМОП матрицы гораздо дешевле в производстве, и поэтому доступнее для многих пользователей. Еще одно немаловажное преимущество КМОП матриц над ПЗС матрицами – потребление меньшего количества энергии.
Первым делом при выборе цифровой камеры мы рекомендуем Вам обратить внимание на размер матрицы. Физическим размером матрицы называется ее геометрический размер, т.е. длина и ширина матрицы, выраженные в мм. Физический размер матрицы определяет ее качество. Узнать значение этого параметра можно из ее технического описания, хотя, как правило, размеры фотосенсоров производители указывают не в мм, а введя специальное обозначение типа матрицы в виде дробных частей дюйма, например: 1/4″, 1/3″, 1/2.5″, 1/2″ и пр. Сравнивая различные цифровые камеры, Вы должны понимать, что размер матрицы больше у той цифровой камеры, у которой знаменатель в указанной дроби будет меньше, т.е. сенсор 1/2″ будет больше сенсора 1/3″.
Какая же связь между физическим размером матрицы, указанным в мм и типом матрицы, выраженном в 1/дюйм? Отметим, что введенное обозначение типа матрицы выражает не размер ее диагонали, а внешний размер колбы передающей трубки. Обратите внимание на то, что не существует конкретной математической формулы, четко выражающей взаимосвязь между устоявшимся обозначением типа матрицы, выраженного в 1/дюйм, и самим физическим размером диагонали матрицы в мм. Тем не менее, в грубом приближении принято считать, что диагональ сенсора равна двум третям его типоразмера.
Размеры в мм |
Тип матрицы |
4.5х3.4 |
1/3.2″ |
5.4х4.0 |
1/2.7″ |
5.8×4.3 |
1/2.5″ |
6.2×4.6 |
1/2.3″ |
7.2×5.3 |
1/1.8″ |
Вполне целесообразно задать вопрос, а на что же влияет размер матрицы? Прежде всего, сколь иронично это бы не звучало, размер матрицы цифровой камеры влияет на ее стоимость и вес.
Помимо этого, как мы уже отмечали ранее, размер сенсора влияет на качество полученных фотоснимков и видеороликов. Во-первых, от размера сенсора зависит количество цифрового шума, который передается на светочувствительные элементы матрицы вместе с основным сигналом.
Из-за цифрового шума полученные снимки получают неестественный вид, в связи с чем возникает такое ощущение, что сверху на снимок наложена маска из точек различного цвета и яркости.
Причинами возникновения шумов могут быть дефекты в структуре сенсора, токи утечки (заряд может пробивать изоляцию и переходить с одного пикселя на другой), нагрева матрицы (так называемый тепловой шум, когда при повышении температуры на 6-8 градусов шум увеличивается в 2 раза) и пр.
Конечно же, нужно понимать, что абсолютно бессмысленно рассматривать показатель шума отдельно – важно соотношение сигнал / шум.
Итак, на количество шумов главным образом влияет физический размер матрицы, а также размер пикселя. Чем больше физический размер сенсора цифровой камеры, тем больше его площадь и, соответственно тем больше света попадает на него. А, следовательно, полезный сигнал матрицы будет сильнее и, значит, мы получим лучшее соотношение сигнал / шум, что обеспечит более яркое и качественное изображение с более правильной и естественной цветопередачей.
Помимо этого, отметим, что слой изоляции, разделяющий пиксели друг от друга, будет толще для пикселей большого размера. Разумеется, что чем толще слой изоляции, тем меньше зарядов смогут пробить ее. Следовательно, токов утечки будет тоже меньше, что соответственно приведет и к уменьшению шумов.
В качестве примера предлагаем Вам представить матрицу определенного размера. Предположим, что на одной такой матрице 3000 пикселей (3 Мпикс), а на второй такой же матрице расположено 5000 (5 Мпикс). А теперь представьте толщину изоляции пикселей для первого и для второго случая!
Еще раз отметим, что чем меньше матрица, тем меньшее количество света на нее попадает. В таком случае Вы получаете слабый полезный сигнал, который приходится усиливать. А с усилением полезного сигнала естественно усиливаются и становятся более заметными шумы.
В заключение еще раз повторим, что чем больше физический размер матрицы, тем большее количество света на нее попадает, а значит, тем более качественно изображение Вы получите.
Автор статьи: Галина Цехмистро
О матрицах простым языком, Гл. 1, Или опять про мегапиксели
Для начала, дадим определение матрице. Матрица — это светочувствительный сенсор преобразующий спроецированное на него через объектив оптическое изображение в электрический сигнал (цифровой аналог фотопленки), который затем с помощью других микросхем фотокамеры преобразуется в поток цифровых данных, который можно записать в файл поместить на носитель информации (карту памяти), а затем посмотреть на мониторе либо распечатать на фотобумаге.
Наверное не одну сотню раз вы слышали, что чем больше в матрице мегапикселей, тем качественней и детализированней будут снимки. Это самое большое заблуждение. Не количество мегапикселей в матрице влияет на картинку, а ее физический размер.
И раз уж обещал обо все рассказывать простым языком и, что у нас на сайте не будет рутинной теории, то расскажу пожалуй на “пальцах”.
Взгляните на эту картинку, здесь схематично представлены матрицы, вернее их физические размеры, каждому цвету соответствует определенный размер матрицы. А ниже будут приведены модели фотокамер с сопоставлением физического размера ИХ матрицы и количеством мегапикселей “затолканным” в нее. Итак, приступим.
На этой картинке видно, как разительно отличаются матрицы по своему размеру. (между прочим прошу обратить ваше внимание на то, что масштаб здесь увеличен).
1) Начнем как полагается с цифры 1. Красным цветом выделена матрица «стандартной» цифровой компактной камеры, ее диагональ измеряется в дюймах и равна 1/2,3″. Такой матрицей снабжено огромное кол-во компакт камер. Для примера я взял популярные на данный момент цифрокомпакты от Canon, а теперь посмотрите на физический размер их матриц и на кол-во «впиханных» в них мегапикселей. … Есть над чем поразмыслить?
СANON Digital IXUS 100 IS Размер матрицы — 1/2,3″ Число Мпикселей — 12,1
|
||
СANON Digital IXUS 990 IS Размер матрицы — 1/2,3″ Число Мпикселей — 12,1 |
||
СANON Digital IXUS 85 IS Размер матрицы — 1/2,3″ Число Мпикселей — 10 |
||
СANON PowerShot SX1 IS Размер матрицы — 1/2,3″ Число Мпикселей — 12,1 |
||
СANON PowerShot A480 Размер матрицы — 1/2,3″ Число Мпикселей — 10 |
||
СANON PowerShot SX200 IS Размер матрицы — 1/2,3″ Число Мпикселей — 12 |
||
Olympus -SP-565 UZ Размер матрицы — 4/3″ Число Мпикселей — 12 |
2) Под цифрой 2 показана матрица размером 4/3 дюйма. В основном матрицы такого размера ставит на свои камеры компания Olympus.
Ниже представлены яркие представители семейства Olympus обладающими такими матрицами
Olympus — E-410 Размер матрицы — 4/3″ Число Мпикселей — 10
|
||
Olympus -E-P1 Размер матрицы — 4/3″ Число Мпикселей — 13.1
|
||
|
3) Под цифрой 3 показана матрица формата APS-C, матрицы этого размера можно встретить на всех популярных моделях цифровых зеркальных фотокамерах начального уровня (т.е. любительских) от Canon и Nikon. Давайте немного углубимся в терминологию. Наверняка вы не раз встречали аббривеатуру DSLR (в интернет или бумажных обзорах по зеркальным фотокамерам). DSLR — (Digital single-lens reflex camera), что означает — Цифровая однообъективная зеркальная камера (однообективная — вовсе не означает, что камера может использует всего один объектив, а означает это что камера не может использовать более одного объектива одновременно; т.е за раз более одного объектива не нацепить)
Canon — EOS 1000D Формат матрицы — APS-C Размер матрицы — 22,2 x 14,8 мм Число Мегапикселей — 10,1
|
||
Canon — EOS 500D Формат матрицы — APS-C Размер матрицы — 22,3 x 14,9 мм Число Мегапикселей — 15 |
||
Canon — EOS 50D Формат матрицы — APS-C Размер матрицы — 22,3 x 14,9 мм Число Мегапикселей — 15,1 |
||
Nikon — D60 Формат матрицы — APS-C Размер матрицы — 23,6×15,8 мм Число Мегапикселей — 10,1 |
||
Nikon — D5000 Формат матрицы — APS-C Размер матрицы — 23,6×15,8 мм Число Мегапикселей — 12,9 |
||
Sony — A700P Формат матрицы — APS-C Размер матрицы — 23,5×15,6 мм Число Мегапикселей — 12,2 |
||
Sony — A350K Формат матрицы — APS-C Размер матрицы — 23,5 x 15,7 мм Число Мегапикселей — 14,2 |
||
Pentax K-x Формат матрицы — APS-C Размер матрицы — 23,6 х 15,8 мм Число Мегапикселей — 12,4 |
||
Pentax K7 Формат матрицы — APS-C Размер матрицы — 23,4 х 15,6 мм Число Мегапикселей — 14,6 |
Если вы внимательно рассмотрели таблицу, то у вас наверняка появились вопросы: почему формат один (APS-C), а размеры в миллиметрах разные, да и что это вообще за формат? Отвечаю: размеры данного формата могут варьироваться от 20.7?13.8 мм до 25,1?16,7 мм. APS-C — Advanced Photo System type-C, что означает Усовершенственная фотосистема классического типа.
4) И наконец перейдем к цифре 4. Эта матрица имеет размер 36х24 мм, и равняется по размеру с кадром 35 мм пленки, да, да той пленки на которую вы когда то снимали своими мыльницами от Kodak или Minolta. Матрицу такого размера имеют профессиональные DSLR камеры (это я вас потихоньку приучаю вас привыкать к аббревиатурам), их еще называют полнокадровые или фул фрейм (от full frame) матрицы. Давайте посмотрим на некоторых «монстров», которые имеют их.
Canon — EOS 5D Размер матрицы — 36 x 24 мм Число Мегапикселей — 12,8
|
||
Canon — EOS 5D Mark II Размер матрицы — 36 x 24 мм Число Мегапикселей — 21,1 |
||
Canon — EOS-1Ds Mark III Размер матрицы — 36 x 24 мм Число Мегапикселей — 21,1 |
||
Nikon — D700 Размер матрицы — 36 x 24 мм Число Мегапикселей — 12,1 |
||
Nikon — D3X Размер матрицы — 36 x 24 мм Число Мегапикселей — 24,5 |
||
Sony — A900 Размер матрицы — 36 x 24 мм Число Мегапикселей — 24,6 |
Выводы: Увеличение количества пикселей на матрицах маленького размера происходит за счет уменьшения размера этого самого пикселя. А это черевато возникновением таких проблем как «шумы». Если сравнить матрицы фотокамер СANON Digital IXUS 990 IS и скажем Nikon — D700, то вы уведите, что число мегапикселей у них равно, но вот если сравнить размеры их матриц в миллиметрах…., то сразу видно, кто кому даст фору, так что уважаемые читатели не ведитесь на количество пикселей при покупке фотоаппарата, приглядитесь к размеру матрицы и качеству объектива.
К вопросу о выборе объектива
Планируя развернуть систему видеонаблюдения, вы неизбежно задаетесь вопросами: куда и сколько установить камер? Как определить наилучшие места их расположения, чтобы избежать «слепых зон»? На каком расстоянии от объектов наблюдения установить камеры, чтобы в итоге получилось достаточно четкое изображение нужных деталей?
На вид и качество изображения большое влияние оказывают не только параметры видеокамеры и объектива, но и их правильное сочетание. Так, иногда отличный, дорогой объектив может давать даже худшее изображение, чем альтернативная дешевая модель.
Расскажем об основных факторах, влияющих на качество и масштаб видеоизображения, которые следует учитывать при выборе объектива для камеры, чтобы по максимуму использовать их возможности и при этом избежать ненужных затрат.
Угол обзора объектива
Одной из важных характеристик систем видеонаблюдения является угол обзора объектива. От него напрямую зависит количество и возможные места установки камер на объекте. Угол обзора объектива определяет величину видимого объекта и масштаб изображения в кадре.
Из этой схемы видно, что на величину угла обзора напрямую влияет не только фокусное расстояние объектива, но и размеры матрицы:
И если с фокусное расстояние определить довольно легко, зная модель объектива, то с размером матриц не все так просто.
Размер матрицы видеокамеры
В зависимости от соотношения сторон (4:3 или 16:9), у матриц с одной и той же диагональю физические размеры различны (Таблица 1). Поэтому, например, камера на матрице 1/3’’ с соотношением сторон 4:3 дает больший угол обзора по вертикали и меньший по горизонтали, чем камера на матрице с такой же диагональю, но соотношением 16:9.
Формат матрицы | Диагональ матрицы (мм) | Соотношение сторон | |||
4:3 | 16:9 | ||||
Ширина (мм) | Высота (мм) | Ширина (мм) | Высота (мм) | ||
1/4 | 4.23 | 3.39 | 2.54 | 3.69 | 2.08 |
1/3 | 5.64 | 4.52 | 3.39 | 4.92 | 2.77 |
1/2.8 | 6.05 | 4.84 | 3.63 | 5.27 | 2.96 |
1/2.7 | 6.27 | 5.02 | 3.76 | 5.47 | 3.07 |
1/2.5 | 6.77 | 5.42 | 4.06 | 5.90 | 3.32 |
1/2 | 8.47 | 6.77 | 5.08 | 7.38 | 4.15 |
В целях облегчения подбора совместимой оптики и расчета углов обзора обычно заявляют ближайшее из стандартных значений для диагонали матрицы: 1’’, 1/2’’, 1/2.5’’, 1/2.7’’, 1/2.8’’, 1/3’’, 1/4’’. При этом измерять ее принято в видиконовых дюймах. Эта единица измерения, равная 2/3 обычного дюйма, была введена со времен зарождения телевидения, когда приёмным элементом в телекамере служила электронная трубка («видикон»), а размер обозначал её диаметр (в который должен был вписываться с запасом снимаемый кадр).
Помимо этого необходимо помнить, что на некоторых режимах работы камеры часть пикселей матрицы не используется. Поэтому при определении угла обзора следует говорить не столько о размере матрицы, сколько о размере активной области матрицы.
Для наглядности приведем несколько примеров:
N1000 (Рис. 2): для всех возможных режимов работы активная область матрицы остается неизменной.
Рис. 2 N1000. 0.3 Мп, VGA, 1/4’’Размер матрицы: 3.7 х 2.77мм, диагональ 4,62 мм=1/3.67 видиконовых дюйма (ближайшее значение 1/4’’).
N37210 (Рис. 3): в зависимости от режима работы активная область матрицы изменяется почти на 30% по вертикали и 25% по горизонтали.
Рис. 3 N37210. 2 Мп, FullHD, 1/2.7’’Размер матрицы: 5.71 х 3.14 мм, диагональ 6.52 мм=1/2.6 видиконовых дюйма (ближайшее значение 1/2.7’’). При разрешении 1024х768 размер активной области матрицы уменьшается до 4.58 х 2.32 мм.
BD2570 (Рис. 4): в зависимости от режима работы активная область матрицы изменяется почти на 50% по вертикали и 25% по горизонтали.
Рис. 4 BD2570. 5 Мп, 1/2.5’’Размер матрицы: 5.61 х 4.31 мм, диагональ 7.08 мм=1/2.39 видиконовых дюйма (ближайшее значение 1/2.5’’). При разрешении 1280х720 размер активной области матрицы уменьшается до 4.22 х 2.21 мм.
Из этих примеров видно, что величина матрицы может отличаться от указанной в паспорте, а размер ее активной области — меняться в зависимости от режима работы.
Однако, при вычислении угла обзора следует учитывать не только эту особенность, но и тот факт, что аберрации реального объектива приводят к усложнению расчетов.
В большинстве объективов, используемых в CCTV, повышение качества изображения осуществляется путем усложнением оптической системы с целью уменьшения аберраций, влияющих на разрешающую способность. Это часто приводит к увеличению геометрических аберраций, таких как дисторсия (рис. 5), воспринимаемых как побочный эффект.
Рис. 5 Идеальное изображение без дисторсии (а), изображение с дисторсией типа «подушка» (б), изображение с дисторсией типа «бочка» (в)Например, положительная дисторсия сокращает угол обзора непропорционально быстро при уменьшении активной области матрицы (синяя рамка на рис. 6).
Рис. 6 Кадры, сделанные объективом с дисторсией (а) и объективом без дисторсии (б)Этот эффект наблюдается как при смене режимов работы одной и той же камеры, так и при установке объектива на матрицы разных форматов. Например, видимый угол обзора у 8-мм дисторзирующего объектива на матрице 1/2 может быть как у 6-мм, а на матрице 1/3 — как у 7-мм.
Непропорциональное уменьшение угла обзора реального объектива с положительной дисторсией объясняется смещением фокальной плоскости в центре кадра, в отличие от идеального объектива (рис. 7), для которого верны соотношения
Рис. 7 Оптическая схема идеального объектива (а) и реального объектива с положительной дисторсией (б)Таким образом, спрогнозировать, какими будут качество и масштаб видеоизображения для пары «камера-объектив» можно достаточно точно только если учитывать все влияющие на это параметры видеосистемы. Универсальный калькулятор BEWARD позволяет не просто вычислить области видимости и углы обзора, но и подобрать подходящие объективы для камер BEWARD.
Ознакомьтесь с обзором матриц, формирующих фотоизображение. Часть 2
Часть 2. История развития форматов
Владимир Нескоромный
Главный редактор сайта alphapro.sony.ru
Продолжение. Начало материала (часть 1) здесь.
Компания-производитель камеры сообщает обычно размер изображения в мегапикселях, а также условный размер матрицы, к примеру, «полный кадр», APS-C, «4/3», разнообразные дюймовые дроби. С практической точки зрения, фотографу полезнее знать кроп-фактор. Это коэффициент пересчета фокусного расстояния объектива для получения с помощью разных камер и объективов одного и того же по передаче перспективы снимка.
Если кроп-фактор 1,5х, это значит, что 50-мм объектив на определенной камере будет работать как 75-мм на полнокадровой. А также, что гиперфокальное расстояние будет примерно в эти же полтора раза меньше. Начало зоны резкости расположится ближе к фотографу, а сама она будет шире.
Чтобы определить кроп-фактор, нужно разделить принятую за «единицу измерения» диагональ малоформатного (24х36 мм) кадра, а это 43,3 мм, на диагональ матрицы выбранной камеры.
Два дюйма — две эпохи
Цифровая фотография унаследовала технологии и стандарты как пленочной, так и видеозаписывающей техники. Так, для расчета кроп-фактора мы используем величину диагонали (43,3 мм) кадра 35-мм кинопленки с перфорацией. Именно эта пленка и, конечно, камеры Leica, где она применялась, в свое время обеспечили популярность этому формату. А вот дюймовым дробям в маркировке матриц мы обязаны видеокамерами, вернее телекамерам.
В телекамерах на заре телевидения использовались для регистрации видеосигнала электронно-лучевые передающие телевизионные трубки — видиконы. Их технологический размер, а именно внешний диаметр трубки, обозначался в дюймах. Этот размер дошел до эпохи цифровых камер как отраслевой стандарт производства теле/видеоаппаратуры. Важно отметить, что этот стандарт характеризует не размер светочувствительной области, а габаритные размеры видикона. В прошлом это было важно для возможности независимой разработки и ремонта телекамер.
Реальный размер светочувствительной зоны матрицы составляет примерно две трети от видиконовской трубки. (Точно узнать значение размеров можно из справочников или из документации аппарата.) Поэтому когда говорят «видиконовский дюйм», то имеется в виду не 25,4 мм (общепринятый дюйм), а около 17 мм (16,93 мм). Иными словами, сам видикон имел габариты 24,5 мм, а диагональ его светочувствительного элемента составляла 17 мм.
Напомним, что для кадра 24х36 мм с диагональю 43,3 мм цифровая фотография унаследовала технологии и стандарты как пленочной, так и видеозаписывающей техники. Так, для расчета кроп-фактора мы используем величину диагонали (43,3 мм) кадра 35-мм кинопленки с перфорацией. Именно эта пленка и, конечно, камеры Leica, где она применялась, в свое время обеспечили популярность этому формату. А вот дюймовым дробям в маркировке матриц мы обязаны видеокамерами, вернее телекамерам.
Сколько дюймов?
Именно в видиконовских дюймах измеряют сенсоры компактных камер. Например, в камерофоне Sony Ericsson Cyber-Shot C905 (2008) установлен КМОП-сенсор с диагональю 1/ 2,5 дюйма. Как это значение перевести в традиционные миллиметры? Нужно единицу разделить на 2,5 и умножить на 16,93 мм. Получается 6,77 мм. Напомним, что диагональ 35-мм кадра равна 43,3 мм. Значит, диагональ сенсора камерофона в 6,4 раза меньше, чем полный кадр. Иными словами, кроп-фактор 6,4х.
Теперь рассмотрим объектив. В спецификациях сказано, что его фокусное расстояние составляет f=5,91 мм. Умножаем это значение на полученный кроп-фактор 6,4х и получаем эквивалентное фокусное расстояние f=38 мм.
Соответственно, популярный формат Four Thirds (4/3 дюйма) пересчитываем следующим образом: 4 делим на 3 и умножаем на 16,93; получается 22,57 мм, что почти в два раза меньше, чем полный кадр (кроп-фактор 2х). Собственно, так и пересчитывается оптика для системы Four Thirds.
В камерафоне Sony Ericsson Cyber-Shot C905 (2008) установлен КМОП-сенсор с диагональю 1/ 2,5 дюйма. Кроп-фактор 6,4х. Фокусное расстояние объектива экв. f=38 мм.
Пленочный формат в цифровых камерах
Терминология современных цифровых камер сберегла для нас память об одной из последних попыток автоматизации и цифровизации пленочной фотографии. В 1990-х годах компании-производители фототехники и фотоматериалов приняли новый набор отраслевых стандартов под названием «Усовершенствованная фотосистема»/Advanced Photo System (APS).
В серийных образцах APS-камер использовалась 24-мм пленка с более тонким слоем фотоэмульсии, по сравнению с 35-мм, и с лучшими характеристиками. В камеру заряжалась почти традиционная кассета, но уменьшенного размера. При съемке можно было выбрать различное соотношение сторон кадра, например, 3:2, 16:9 или 3:1 (панорама). Первый режим съемки маркировался «С» (Classic), второй — «H» (High Definition), третий — «P» (Panoramic).
Собственно, когда стали появляться цифровые камеры, а полный кадр все еще был непозволительной роскошью, разработчики решили использовать APS-формат применительно к новым цифровым моделям. Они выбрали формат, который ближе к фотографии, а не видиконовский из видеоиндустрии.
Например, камера ILCE-6500 оснащается сенсором APS-C с площадью кадра 23,5х15,6 мм. Как мы уже написали, это Classic, соотношение сторон 3:2. Попробуем просчитать кроп-фактор. При диагонали 28,20 мм кроп-фактор составляет 1,54х.
Матрица формата APS-C (23,5×15,6 мм). Разрешение 20 Мпикс.
Заключение
Хотя в качестве отправной точки для пересчета и был выбран кадр узкой пленки 24х36 мм, он не является вершиной пирамиды матриц. Современные технологии уже обеспечили доступность матриц и камер больше малого формата. И если говорить о цифровом среднем формате, то следует сказать, что для него кроп-фактор меньше единицы, например, 0,79х, Но цифра эта малоинформативна для практического применения. Фотографы, использующие среднеформатные камеры, не пересчитывают свои объективы на малоформатные, а оперируют более профессиональным термином — «угол поля зрения объектива». Но это тема уже для другого материала.
Примечания:
1_ Four Thirds — Стандарт крепления объективов для цифровых зеркальных фотокамер.
2_ Advanced Photo System (APS) — «Усовершенствованная фотосистема» («А-Пэ-Эс»).
3_«С» (Classic) — Классический формат.
4_«H» (High Definition) — Формат высокой четкости.
5_«P» (Panoramic) — Панорамный формат.
похожие статьи
Какой размер матрицы фотоаппарата лучше: таблица размеров
Влияние размера матрицы фотоаппарата на качество съемки
Матрица цифрового фотоаппарата — это тот узел фотокамеры, в котором непосредственно формируется изображение. Матрица представляет микросхему с пикселями. При попадании фотона на пиксель образуется сигнал, тем больший, чем большее кол-во фотонов света попадает. Возникающие электрические сигналы обрабатываются процессором камеры и архивируются на карту памяти.
Как выбрать матрицу фотоаппарата и что такое разрешение матрицы фотоаппарата?
От количества пикселей зависит разрешение изображения и уровень шумов. Чем больше количество пикселей на матрице, тем лучше детализация.
На матрице находятся 2592 точки по ширине, 1944 точки по высоте. При перемножении этих величин получается примерно 5 млн пикселей. Такая камера имеет 5 мПа.
Обратите внимание
Пиксели преобразуют свет в ч/б изображение, чтобы картинка получилась цветной используются цветные фильтры. Каждый фильтр фильтрует лучи своего цвета, строя изображение при помощи процессора. Процессор рассчитывает цвет пикселя с учетом полной информации соседних ячеек.
Матрицы, покрытые фильтрами, цвет пропускают хуже, из-за этого изображение получается размытым. Процессор исправляет автоматически или ручной корректировкой четкость изображения, контрастность, яркость, снижает количество шумов на фото.
Типы матриц
Кроме количества пикселей большое значение имеет тип матрицы. Какой лучше тип матрицы фотоаппарата? Здесь каждый выбирает сам.
- ПЗС-матрицы (CCD) — устройства со светочувствительными фотодиодами. ПЗС-матрица выпускается большинством ведущих производителей фототехники.
- КМОП-матрицы (CMOS) отличаются малым энергопотреблением. Матрицы этой технологии могут иметь систему автонастройки времени экспонирования для отдельного пикселя, что позволяет увеличить фотошироту.
- Live-MOS матрицы разрабатывались компанией Panasonic, а в фотоаппаратах впервые появилась у фирмы Olympus. В наше время эту матрицу с возможностью визирования по экрану применяют все крупные производители. Благодаря ей можно получить живое изображение без увеличения шумов.
Есть и другие виды матриц: DX-матрица, матрица Nikon RGB и пр.
ПЗС матрицы собирают картинку в аналоговой версии, а затем оцифровывают. CMOS матрицы оцифровывают каждый пиксель по отдельности. На данный момент на этих матрицах выпускаются больше 90% фотоаппаратов. Технология CMOS дала возможность снимать видео и оснастить этой функцией современные фотоаппараты.
Какая лучше
Очень важный параметр при рассмотрении матрицы — это размер матрицы фотоаппарата в сантиметрах или дюймах. Грубо говоря, физический размер матрицы фотоаппарата — это величина диагонали прямоугольника матрицы (эти характеристики можно найти в инструкции). Большой пиксель матрицы имеет более сильную чувствительность к свету.
Чем меньше пиксель, тем меньше фотонов света он уловит. При равном кол-ве матриц более качественно, с меньшим кол-вом шумов будет снимать камера с большей по размеру матрицей, а значит, большим размером пикселя. Чем больше размер матрицы цифрового фотоаппарата, тем чище от шумов будет съемка в условиях недостаточной освещенности.
При одинаковой пиксельности, площадь каждого пикселя более крупной матрицы естественно больше, а значит светочувствительность и цветопередача у Full Frame матрицы куда лучше.
Это не все характеристики матрицы фотоаппарата. Чувствительность матрицы ISO влияет на качество съемки в темное время суток или при плохой освещенности.
Чем больше ISO можно поставить в настройках, тем лучше получится качество снимков в темноте.
При большой чувствительности может проявиться шум в виде зернистости.
Сравнение размеров матриц
Какой размер матрицы фотоаппарата лучше? Размер матрицы — это параметр аналогичный размеру негатива в пленочном фотоаппарате. Full Frame лучшая матрица имеет размеры близкие к стандартному кадру 35мм негатива. Кадр на пленке имеет размеры 24 на 36мм.
Большинство цифровых компактных фотоаппаратов до 7 мПа имеют матрицу меньшего размера 7,2 на 3,5мм, а больше 7мм — еще более меньшую матрицу 4 на 5мм.
Таким образом, площадь матрицы компактной камеры в 25 р. меньше площади пленочного кадра. Матрица зеркального аппарата более продвинутого уровня, меньше площади кадра в полтора-два раза.
Топовые зеркальные камеры отличаются Full Frame матрицей.
Важно
Какая матрица лучше для фотоаппарата? Размер матрицы может варьироваться от 1/3.2″ (4.0 * 5.
4мм, такие устройства устанавливаются в недорогих бюджетных аппаратах) до 4 / 3″ (18 * 13,5мм , — дорогостоящие цифровые камеры). Есть DX, APS-Cформат (24 * 18 мм для зеркалок).
Самые крупные полнокадровые (36 * 24 мм), среднеформатные (60 * 45 мм) матрицы устанавливаются на более дорогие профессиональные камеры.
Кроп-фактор — соотношение матриц
Кроп-фактор – есть ни что иное как соотношение величины кадра пленки 35mm к величине интегральной микросхемы из светочувствительных элементов фотоаппарата (Kf = диагональ 35мм≈43,3мм / диагональ микросхемы).
Пользуясь кроп-фактором, доступно знать равнозначную видимую дистанцию объектива на своей камере и соотносить объективы другой цифровой фототехники с зеркалами. Этот демонстратор, указывающий на различие меж величинами матрицы в цифровой фотокамере у вас и классическим кадром на пленке при формате 35mm.
Такой фактор важен прежде всего для вычисления расстояния фокуса объектива, когда его нужно установить на различные камеры, и в действительности это очень важно.
Если термин и представляется сложным, в реальности это совершенно не так тяжело.
Ибо кроп-фактор в фотопромысле давно занял важные позиции; обязательно требуется правильное понимание, как возможно пользовать его для сравнения качества работы объективов настолько, чтоб не заострять внимание непосредственно на фотокамере.
Подобные показатели помогут исключить всевозможные разногласия и сумятицу. Освоив понятие кроп-фактора, вам станет доступно производить точный подбор требующихся объективов, совершая покупку и пользуясь цифровой зеркальной фототехникой.
Матрица и глубина резкости
Еще один параметр напрямую зависит от матрицы. Чем больше размер, тем меньше глубина резкости. Именно поэтому компактной камерой можно снимать до горизонта, а зеркалка вдобавок прекрасно справится с выделением объекта и макросъемкой.
Кроп-фактор — параметр соотношения диагонали кадра, который соответствует 35мм пленки и диагонали размера матрицы.
На практике, это значит, что чем меньше размер матрицы, тем больше будет глубина резкости.
Портретная съемка поэтому лучше удастся на камере с большим размером матрицы, а при маленькой матрице задний фон будет оставаться четким независимо от вашего желания.
Это важно для фотографов, которые в ряде случаев предпочитают размытый фон, например, при съемке портретов. Чем больше КРОП фактор, тем менее вероятность получить качественную размытость.
Таким образом, покупателю самому нужно решить проблему какая должна быть матрица на его фотоаппарате. Что важнее компактность или большие размеры камеры, глубина резкости или возможность снимать размытый фон. Идеальных решений пока не разработано. А при равном количестве пикселей нужно выбирать больший размер матрицы. Чем она крупнее, чем меньше шум при недостатке света.
Источник: http://StuffOnly.net/uroki/osnovy-fotografii/teoriya/matrix.html
Размер матрицы все, что нужно знать
Раньше было вполне логичным, что покупая компактную камеру, вы получали небольшую матрицу, а если выбирали крупногабаритную зеркалку со сменными объективами, матрица на ней была значительно больше. Это сказывалось на качестве фотографий, поскольку чем больше матрица, тем более детализированы были изображения.
Сейчас это в принципе, тоже в какой-то мере актуально, матрица — это самая дорогая часть камеры в плане производства, и чем больше матрица, тем и камера, соответственно, дороже. Потому на дорогие камеры обычно не устанавливаются матрицы 1/2.3 дюймовые, а на дешевых, соответственно, не найти полнокадровую.
Но надо сказать, что сейчас многие производители стали предлагать компактные камеры с относительно большими матрицами, точно так же как и камеры под сменные объективы с меньшими матрицами. Так что разобраться в ситуации, пожалуй, стало сложнее. Небольшие матрицы способны отлично срабатывать в различных условиях, и даже имеют некоторые преимущества перед большими.
Совет
За последние годы и сама технология создания матриц значительно продвинулась вперед, так что сегодня большое количество предлагаемых вариантов может смутить даже опытного пользователя, что уж говорить о тех, кто приобретает первую фотокамеру. А ведь размер матрицы еще и на фокусном расстоянии сказывается, так что учитывать при выборе камеры действительно нужно очень многое.
Итак, мы решили разобраться в различных типах матриц, чтобы расставить все по местам. Но для начала нужно уточнить, как именно размер матрицы влияет на эффективное фокусное расстояние.
Фокусное расстояние
Итак, мы уже выяснили, что размер матрицы связан с фокусным расстоянием, то есть с тем, какой именно объектив подойдет вашей камере.
Если вы приобретаете компактный девайс с не съемным объективом, проблема сама собой отпадает, то есть с позиции покупателя это гораздо проще. Но не просто так профессионалы выбирают именно те камеры, где объективы можно менять.
Любой объектив должен иметь поле (круг) изображения или диаметр света, который существует в объективе и который покрывает размер матрицы. Есть одно исключение, к которому мы вернемся позже.
Итак, встроенные или нет, объективы всегда помечены реальным фокусным расстоянием, а не эффективным фокусным расстоянием, которое вы получите при использовании на той или иной камере.
Но проблема в том, что различные объективы с различной маркировкой могут в итоге обеспечить одно и то же фокусное расстояние для работы. Почему? Потому что они предназначены для разных матриц.
Именно поэтому производители помимо маркировки указывают эквивалент, где основным расстоянием считается 35мм или полнокадровая матрица.
Вот — один из примеров: камера с матрицей меньше чем полнокадровая вполне может использоваться с 18-55мм объективом, но на деле фокусное расстояние, которое вы получите будет ближе к 27-82мм.
Обратите внимание
Это все происходит потому, что матрица не достаточно велика, чтобы использовать объектив точно так же как смог бы полнокадровый.
Из-за того, что периферическое пространство внутри объектива не принимается в расчет, получается тот же эффект как от использования объектива с большим фокусным расстоянием.
В компактных камерах может был установлен 19мм объектив, но из-за размера матрицы, который меньше фуллфрейма, вы получите в итоге большее фокусное расстояние, около 28мм. Точная длина определяется кроп-фактором, то есть числом, на которое нужно увеличить данное под фуллфрейм фокусное расстояние, чтобы выяснить какое расстояние получится на той или иной камере.
Размеры матриц
1/2.3 дюйма
Размер такой матрицы примерно 6.3 x 4.7 мм. Это — самая маленькая матрица, которую можно найти в современных камерах, и чаще всего — в бюджетных компактных моделях. Разрешение такой матрицы составляет, как правило, 16-20 Мп.
По крайней мере такой расклад был самым популярным какое-то время назад. Сегодня многие производители стали делать больший упор на любительские фотоаппараты с большими матрицами, так что и размер такой не так распространен как ранее.
Однако, преимущество в том, что такой размер позволяет получить компактную камеру и использовать ее с длиннофокусными объективами, например компактными суперзумами. А большая матрица значит, что и объектив понадобится больший.
При хорошем освещении такие камеры могут предоставить неплохой результат, но для более придирчивых фотографов они точно не подойдут, поскольку при низкой освещенности будут зернить.
1/1.7 дюймов
Размер этих матриц 7.6 x 5.7мм. С такой матрицей гораздо проще выделить объект съемки из фона, и соответственно, производительность в плане деталей как в тени, так и на свету.
Так что использовать их можно уже в более разнообразных условиях.
Раньше такие камеры были самыми распространенными среди любителей, но сейчас их место стремительно занимают дюймовые матрицы, о которых речь и пойдет дальше.
А вот 1/1.7 дюймовые матрицы используются в некоторых относительно устаревших камерах Q-серии Pentax.
Дюймовые матрицы
Размер дюймовой матрицы 13.2мм x 8.8мм. Сегодня такие матрицы очень популярны на различных типах камер, размер позволяет им оставаться легкими и компактными.
Логично, что самый популярный способ применения для дюймовой матрицы — это карманные любительские камеры, на которых объектив будет лимитирован 24-70мм или 24-100мм (если брать эквивалент 35мм).
Однако, на некоторых суперзум камерах он тоже используется?, примеры — это Sony RX10 III и Panasonic FZ2000.
Важно
Гораздо лучше дюймовая матрица нам знакома по камерам Nikon серии 1, например Nikon 1 J5 — отличной и легкой камере, которая способна делать отличные фото и снимать 4К видео. Такую матрицу можно встретить даже среди смартфонов — Panasonic CM1.
Камеры с дюймовой матрицей способны показать результаты, значительно отличные от предыдущих вариантов. Качество их будет высоким, а даже компактные камеры, как правило, имеют широкую максимальную апертуру, так что на матрицу попадает достаточно света, потому и фотографии выходят четкими и резкими.
Частично, это результат технологии, а не только размера матрицы. Матрицы современного производства могут более эффективно захватывать свет.
Микро 4/3
Матрица микро 4/3 имеет физический размер 17.3 x 13мм. Этот формат используется в компактных зеркалках и беззеркалках Olympus и Panasonic. Они ненамного больше по размеру, чем дюймовые матрицы, но меньше чем APS-C, речь о которых пойдет ниже.
По сути, микро 4/3 — это четверть размера полнокадровой матрицы, так что считать для нее активное фокусное расстояние предельно просто: достаточно умножить фокусное расстояние на 2.
Иными словами, 17мм объектив на камере с матрицей микро 4/3 обеспечит фокусное расстояние такое же, как 34мм объектив на полнокадровой матрице. По аналогии, 12-35мм даст 24-70мм и так далее.
На камере Lumix DMC-LX100 используется матрица микро 4/3 разрешением 12.8 Мп. Это — одна из компактных цифровых камер, которые обладают большим количеством функций и небольшим размером. Камера оснащена объективом Leica с фокусным расстоянием 24-75мм.
APS-C
Средний физический размер такой матрицы 23.5 x 15.6мм. Такая матрица используется на зеркальных камерах для начинающих и любительских камерах, а сейчас и на многих беззеркалках. Матрица APS-C обеспечивает отличный баланс между качеством изображения, размером и вариативностью в плане совместимости с различными объективами.
Не все APS-C матрицы одинаковы по размеру, ведь это зависит от производителя тоже. Например, матрицы APS-C на камерах Canon физически немного меньше чем те, что установлены в Nikon и Sony, таким образом ее кроп-фактор равен 1.6x, а не 1.5x.
Совет
В любом случае, APS-C — это всегда отличный вариант и профессиональные фотографы нередко предпочитают его для съемок природы и спортивных мероприятий, потому что благодаря кроп-фактору появляется возможность “приблизиться” к объекту съемки имеющимся объективом.
APS-C доступны на некоторых компактных камерах, например Fujifilm X100F, это обеспечивает высокое качество для фотографий на портативных камерах, особенно в комплекте с объективами с постоянным фокусным расстоянием. 23мм объектив на Fujifilm X100F, имеет широкую максимальную апертуру, потому с помощью этой камеры можно без труда добиться узкой глубины резкости.
APS-H
Размер матриц APS-H как правило равен 26.6 x 17.9мм. Сегодня этот формат практически не встречается, и ассоциируется только с устаревшими моделями Canon EOS-1D (EOS-1D Mark III и Mark IV). Сейчас, правда, в этой серии используются фуллфреймы.
Поскольку APS-H больше чем APS-C, но меньше полнокадровой матрицы, кроп-фактор, соответственно равен 1.3х, потому 24мм объектив обеспечит на такой камере фокусное расстояние приблизительно 31мм.
Одна из последних фотокамер, где можно встретить такую матрицу — это Sigma sd Quattro H. Однако и Canon решили не отказываться от APS-H совсем, и предпочли применить эту матрицу для камер наблюдения, а не для зеркальных фотоаппаратов.
Фуллфрейм
36 x 24мм она же фуллфрейм, она же полнокадровая матрица и она же примерно такая же по размеру как негатив пленочной фотографии. Используются полнокадровые матрицы на любительских и профессиональных камерах и считаются самым удобным вариантом для съемок.
Размер такой матрицы позволяет ей принимать на себя больше света, вследствие чего и фото получаются выше по качеству чем с меньшими матрицами. Соответственно, и когда речь идет о количестве пикселей, выбор больше.
А разрешение полнокадровых матриц варьируется от 12 до 50Мп.
Кроп-фактор, конечно, в случае с полнокадровой матрицей значения не имеет, так как маркировка объектива будет соответствовать активному фокусному расстоянию.
Однако же, некоторые объективы, созданные под APS-C матрицы все равно можно использовать с фуллфреймами, но разрешение будет ограничено (камера обрежет углы, чтобы избежать виньетирования).
Но проверять совместимость, разумеется, нужно всегда, иначе есть риск повредить зеркало.
Средняя (медиум) матрица
44мм x 33мм – размер такой матрицы. Это, очевидно, больше фуллфрейма и с момента появления такие матрицы вызвали оживленный интерес и дискуссии. Они использованы в камерах Fujifilm GFX 50S, Hasselblad X1D и Pentax 645Z, последняя немного старше остальных. Применяются они в основном, исключительно профессиональными фотографами в силу цены таких камер и их специфики.
Не факт, что на этом развитие матриц как таковых остановится, но пока что это — все доступные на рынке типы матриц, а какая подойдет для ваших фото интересов, решать только вам.
Источник: https://www.fotosklad.ru/expert/photo/article/razmer-matritsy-vse-chto-nuzhno-znat.html
Матрица цифрового фотоаппарата: типы, размер, разрешение, светочувствительность, чистка
Ни один фотоаппарат не может обойтись без матрицы. Современные модели оснащаются ей практически поголовно. Так произошло в момент, когда цифровые аналоги начали вытеснять устаревшие пленочные технологии.
Матрица фотоаппарата является одним из основных компонентов, без которых невозможна эксплуатация всего прибора в целом, ведь его роль если и не является ключевой, то, по крайней мере, может считаться одной из ведущих. Именно матрица отвечает за качество будущего снимка, цветопередачу, четкость, полноту кадра.
Как и другие важные элементы фототехники, матрица обладает рядом основных параметров, на которые обычно принято ориентироваться при выборе той или иной модели.
Типы матриц
Матрица цифрового фотоаппарата – это, в первую очередь, микросхема. Она преобразует световые лучи, которые, преломившись в системе линз и зеркал, попадают на нее.
В результате такого преображения получается электрический сигнал, который выводится в цифровом виде, образуя снимок. За весь этот процесс отвечают специальные фотодатчики, расположенные на самой плате.
Чем больше количество датчиков, чувствительных к свету, тем больше разрешение, и, как следствие, качество конечного снимка.
Встречаются матрицы следующих типов.
- ПЗС – тип матрицы фотоаппарата, который дословно расшифровывается как прибор зарядовой связи. В английском варианте – Charge-Coupled Device. Весьма известная аббревиатура, которая, впрочем, не так часто встречается в наши дни. Многие используют приборы, в основе которых лежат светодиоды, имеющие высокую светочувствительность, созданные на основе ПЗС системы, но, несмотря на широкую распространенность, данный вид микросхем все больше вытесняется более современным.
- КМОП-матрица. Формат матрицы, введенный в эксплуатацию в 2008 году. Впрочем, история создания данного формата уходит корнями в далекий 93-й, когда впервые была опробована технология APS. КМОП-матрица – это комплиментарный металл-оксид-полупроводник. Данная технология позволяет производить выборку отдельного пикселя почти так же, как и в стандартной системе памяти, к тому же, каждый пиксель оснащается дополнительным усилителем. Поскольку данная система является более современной, она зачастую оснащается автоматической подстройкой времени экспонирования каждого пикселя по отдельности. Данное улучшение позволяет получить полный кадр без потери боковых границ, а так же без потери верха и низа кадра. Полноразмерная матрица чаще всего бывает выполнена по технологии КМОП.
- Существует еще один тип матрицы – Live-MOS-матрица. Ее выпустила фирма «Панасоник». Данная микросхема функционирует при помощи технологии, в основе которых лежит МОП. МОП-матрица позволяет делать качественные профессиональные снимки без высокого уровня шума, а также исключает перегрев.
Физический размер матрицы
Размер матрицы фотоаппарата – одна из ее важнейших характеристик. Как правило, его указывают в дюймах в виде дроби. Больший размер подразумевает меньшее количество шумов на конечном снимке. К тому же, чем больше физический размер, тем больше световых лучей способна зарегистрировать матрица. Объем и количество лучей напрямую влияют на качество передачи оттенков и полутонов.
Кроп-фактор — это соотношение размеров кадра пленочного фотоаппарата 35 мм к размерам матрицы цифрового фотоаппарата. Все дело в том, что процесс создания цифровой матрицы довольно дорогостоящий, и поэтому производители постарались максимально сократить ее размер.
Чаще всего кроп-фактор используют для замера наиболее точного расстояния фокуса у объектива, устанавливая его на различные приборы. Здесь вступает в игру такое понятие, как эквивалентное фокусное расстояние (ЭФР), которое вычисляется путем умножения фокусного расстояния (ФР) на кроп-фактор.
Так, объектив с полнокадровой матрицей (кроп=1) и объективом с ФР 50 мм зафиксирует такое же по размерам изображение, как и кропнутая матрица 1,6 с объективом с ФР 30 мм. В этом случае можно сказать, что ЭФР у этих объективов одинаковое.
Ниже приведена таблица, в которой можно провести сравнение, как меняется ЭФР в зависимости от кроп-фактора.
Количество мегапикселей и разрешение матрицы
Матрица сама по себе является дискретной. Она состоит более чем из миллиона элементов, которые и преобразовывают световой поток, идущий от линз. В характеристике каждой модели фотоаппарата можно отыскать такой параметр матричной платы как количество светочувствительных элементов или разрешение матрицы, измеряемое в мегапикселях.
Правда, здесь есть и обратная зависимость. Если физический размер матрицы меньше, то и количество мегапикселей должно быть пропорционально меньше, в противном случае не удастся избежать эффекта дифракции: фотографии будут замыленными, без четкости.
Чем больше размер пикселя, тем больше он способен зафиксировать лучей, падающих на него. Размер пикселей напрямую связан с размерами матрицы, и влияет, в основном, на широту кадра.
Обратите внимание
Чем больше количество мегапикселей с правильным соотношением размеров матрицы, тем больше лучей света смогу уловить датчики.
Количество зафиксированных лучей напрямую влияет на исходные параметры преобразуемого материала: резкость, цветность, объем, контрастность, фокус.
Таким образом, разрешение фотокамеры влияет на качество снимка. Зависимость разрешения от объема использующихся пикселей очевидна. В объективе при помощи сложной расстановки оптических элементов формируется необходимый световой поток, который потом матрица поделит на пиксели.
Оптические приборы тоже обладают собственным разрешением. Более того, если разрешение объектива достаточно мало, а передача двух светящихся точек, разделяемых одной темной, происходит как единого целого, то разрешение будет не столь отчетливо выделяться.
Происходит это именно из-за прямой зависимости и привязки к числу мегапикселей.
Если говорить о разрешении современных цифровых микросхем, то оно складывается из размера пикселя (от 2 до 8 мкм). На сегодняшний день на рынке представлены модели с показателями до 30 мп.
Светочувствительность
В фотоаппаратах по отношению к матрице принято использовать термин эквивалентной чувствительности. Связано это с тем, что подлинную чувствительность можно измерять различными способами в зависимости от множества параметров матрицы. Зато, применив усиление сигнала и цифровую обработку, пользователь может обнаружить высокие пределы чувствительности.
Параметры светочувствительности демонстрируют возможность исходного материала преобразовываться из электромагнитных воздействий потока света в электрический двоичный сигнал. Проще говоря, показывать, сколько требуется света для получения объективного уровня электрического импульса на выходе.
Параметр чувствительности (ISO) чаще всего используется фотографами для демонстрации возможности съемки в условиях плохого освещения.
Увеличение чувствительности в параметрах прибора позволяет улучшить качество конечного снимка при необходимом значении диафрагмы и выдержки. ISO может достигать значения от нескольких десятков до тысяч и десятков тысяч единиц.
Негативной стороной высоких значений светочувствительности является появление «шумов», которые проявляются в виде эффекта зернистости кадра.
Как проводить чистку матрицы в домашних условиях
Битые пиксели не всегда могут быть таковыми на самом деле. В действительности, когда происходит смена объектива, на матрицу могут попасть частицы мусора, вызывающие эффект «битого пикселя». Чистка матрицы фотоаппарата нужна для профилактики этого эффекта, а также для более комфортной работы с прибором.
Со временем, в особенности, если устройство эксплуатируется подолгу в различных погодных условиях, матрица может покрыться слоем пыли.
При нарушении герметичности в области крепления объектива на поверхность может попасть небольшое количество влаги, что тоже может негативно сказаться на качестве кадра.
Важно
Чистку можно доверить профессионалам из сервисного центра, а можно провести и самостоятельно, в домашних условиях.
Первый и самый простой способ очистки стеклянной поверхности кремниевой пластины микросхемы – сдувание пыли.
Для этого следует использовать самую обычную грушу для чистки объективов, она продается в любом крупном магазине бытовой техники. К сожалению, использование груши помогает только при снятии легкого налета небольших песчинок пыли.
Для более крупных частиц, которые могли прилипнуть к поверхности, может потребоваться что-то более основательное.
Если груша не помогла справиться с пятнами на матрице, можно попробовать использовать специальный набор для очистки стеклянной поверхности. Стоит он несколько дороже, но эффективность очистки значительно выше.
- Первый пункт в очистке – использование специального пылесоса. Его сборка не занимает много времени и детально описана в инструкции к набору. На конце устройства находится мягкий наконечник, так что повреждение прибора во время работы исключено. Лучше всего будет прочистить при помощи пылесоса не только стеклянную поверхность, но и все скрытые полости, доступные для чистки.
- После уборки при помощи пылесоса можно начинать влажную уборку. Она осуществляется при помощи специальных щеточек, одна из которых влажная, другая сухая. Этот вид уборки нужен для пылинок, которые, будучи мокрыми, попали на поверхность стекла, и, высохнув, прикрепились к нему, создав эффект «битого пикселя». Влажная щетка пропитана специальным раствором, который эффективно удаляет засохшие песчинки и пылинки, не оставляя пятен и разводов. Необходимо проводить по стеклу плавными аккуратными движениями, лишь слегка нажимая на саму щетку. Оставшаяся влага довольно быстро испарится сама. Даже если после влажной уборки на стекле остается пара капель, то они прекрасно удаляются сухой щеточкой (кисточкой).
- Третий этап – финальный, проводим сухой щеточкой по матрице и убеждаемся, что она чистая.
После очистки можно попробовать сделать тестовый снимок, чтобы убедиться, что процедура прошла успешно. Для этого необходимо закрыть диафрагму до максимального значения и сделать снимок чистого белого листа, приведя объектив в состояние полной расфокусировки. Затем сравнить качество снимков до и после.
Почистить матрицу зеркального фотоаппарата довольно просто, для этого не требуется каких-то глубоких знаний или большого опыта, достаточно желания, немного терпения и знания базовых принципов очистки высокоточной оптической техники.
Заключение
Матрица фотоаппарата является важнейшей деталью любой современной зеркалки. Без нее невозможно сделать снимок, а от ее параметров зависит дальнейшее использование устройства. Если параметры матрицы выбраны неправильно, фотоаппарат не будет оптимально справляться со своими задачами. Матрица не требует какого-то дополнительного ухода, кроме периодической чистки стеклянной поверхности.
Источник: http://Tehnika.expert/cifrovaya/fotoapparat/matrica.html
Какая матрица для фотоаппарата лучше
В 1981 году компания Sony представила миру первый цифровой фотоаппарат. Изобретатели создали цифровой заменитель плёнки — матрицу. Этот прорыв дал возможность делать тысячи снимков и сохранять их в цифровом виде. Качество изображения стало зависеть не только от оптики, но и от размеров и свойств матрицы.
1
Что же это за свойства? Сначала вспомним, как формируется изображение. Матрица фотоаппарата — это решетка с плотной структурой. Она состоит из крошечных светочувствительных элементов — фотодиодов. Свет, собранный объективом, попадает на матрицу. Фотодиоды преобразуют этот свет в электрический заряд. Далее заряд поступает в процессор.
Он «читает» поступившие заряды и преобразует их в цифровой язык. После этого создается пиксель. Он хранит в себе информацию о яркости и цветовом оттенке, в виде цифр и битов. Каждый пиксель повторяя расположение фотодиода помещается на изображение. Миллионы крошечных пикселей формируют снимок, который записывается на карту памяти.
Матрица — это воспринимающая часть фотоаппарата.
Когда на неё попадают фотоны света, она преобразует их в электричество.
2
Теперь рассмотрим, какие параметры матрицы влияют на качество картинки:
- физический размер;
- размер фотодиода.
Два этих параметра влияют на:
- светочувствительность;
- резкость;
- разрешение;
- динамический диапазон цветов.
3
Стандартный размер 35-миллиметровой пленки был взят за основу при создании матрицы. Лучшие камеры обладают 35 мм (24х36 мм) матрицей. Такой размер позволяет захватить максимально много пространства в кадр. Большая матрица имеет ряд преимуществ. Но производство таких сенсоров относительно дорогое. Чтобы сделать технику доступнее, размеры матрицы начали уменьшать.
В любительской зеркальной камере она уменьшена в 1,5 раза – от размера 36х24 мм до размера 15,7х23,6 мм. «Уменьшение в 1,5 раза» называют кроп-фактором. В «мыльницах» матрица уменьшена в 5 раз от 35 мм. Чем меньше размер матрицы — тем меньше пространства она сможет захватить.
При одинаковом месте съемки маленькая матрица обрежет кадр.
Очень частое заблуждение, что меняется фокусное расстояние.
4
У каждой матрицы есть чувствительность. Она зависит от размера фотодиода. Чем больше фотодиод, тем больше «полезного» света он воспринимает. В последствии камера с большим фотодиодом позволяет:
- Фотографировать на больших ISO без цифрового шума.
- Использовать более короткую выдержку, чтобы получить резкое изображение.
5
В матрице с большими пикселями более широкий динамический диапазон цветов. Но нельзя увеличивать размер фотодиода на маленькой матрице. Если это сделать, то уменьшится количество мегапикселей (разрешение).
Посмотрите на характеристики двух камер. Canon 1Ds Mark II – полнокадровая, но из-за большого размера пикселя имеет максимальное разрешение, как и Nikon D7000/5100.
6
Так происходит, потому что разрешение определяется количеством пикселей на дюйм (ppi или dpi). Чем меньше размер фотодиода — тем больше пикселей поместится в одном дюйме. Один миллион пикселей называют мегапикселем. Но их значимость сильно переоценивают маркетологи. Большое разрешение вам понадобится только при распечатке больших изображений.
Для того чтобы распечатать фотографию 10х15 см, хватит 2 мегапикселя. Для наглядности возьмите любое изображение с большим разрешением. В графическом редакторе уменьшите его на 50%. Сравните два изображения. Они выглядят совершенно одинаково. Вы заметите потерю детализации, только если увеличить масштаб.
Для примера использовался фотоаппарат Nikon D5100.
Отталкиваясь от вышесказанного, можно сделать вывод: физический размер матрицы и её свойства – и есть показатель качества. Для макросъемки важнее детализация изображения и количество пикселей. Для съемок в плохом освещении подойдет более светочувствительная матрица.
Для любительской съемки могут подойти качественные «цифровики» с маленькой матрицей. Снимайте тем, что у вас есть. Ведь для того чтобы получить хорошую фотографию, не нужна дорогая техника.
Какой бы большой ни была ваша матрица, она не обеспечит глубокий смысл снимка или завораживающий пейзаж.
Источник: https://sovetclub.ru/kakaya-matrica-dlya-fotoapparata-luchshe
Фото в нашей жизни
Размеры матриц цифровых фотоаппаратовВ технической характеристике цифрового фотоаппарата размер матрицы может указываться в нескольких единицах измерений: в мегапикселях или пикселях, в частях дюйма, а также физический размер матрицы в миллиметрах (длина и ширина).
Размер матрицы цифрового фотоаппарата в мегапикселях или пикселях несет наименее объективную информацию о качестве матрицы. В этом случае мы знаем количество пикселей. Но, не зная физического размера фотодиода, трудно судить о качестве матрицы.
Размер диагонали матрицы цифрового фотоаппарата более достоверно, но не очень наглядно. Сравнивая диагонали, мы можем только судить, какая матрица больше. Но важную роль играет отношение сторон матрицы. А этой информации мы в данном случае не получим.
Размер матрицы цифрового фотоаппарата, выраженный в миллиметрах несет наиболее достоверную и полную информацию.
Нужно сказать, что все матрицы сравниваются с размером кадра 35мм фотопленки для пленочного фотоаппарата.
Размер кадра фотопленки составляет 36 * 24 мм. Этот размер на сегодняшний день является стандартом. Соответственно, чем ближе размеры матриц цифровых фотоаппаратов приближается к размеру кадра пленочного фотоаппарата, тем лучше матрица.
Ниже приводится таблица наиболее «ходовых» размеров матриц фотоаппаратов.
Таблица размеров матриц цифровых фотоаппаратов
Диагональ вдюймах | Размер матрицы в мм | Кроп – фактор |
1/3.2″ | 4,5 * 3,4 | 7.9 |
1/2.7″ | 5,3 * 3,96 | 6.7 |
1/2.0″ | 6,4 * 4,8 | 5.6 |
1/1.8″ | 7,2 * 5,3 | 4.8 |
2/ 3″ | 8,8 * 6,6 | 4.0 |
1/1″ | 12,8 * 9,6 | 2.7 |
4/3″ | 18,1 * 13,3 | 2.0 |
APS-C | 22,7 * 13,825,1 * 16,7 | 1.4 – 1.74 |
Кадр 35мм пленки | 36 * 24 | 1 |
Из талицы размеров матриц цифровых фотоаппаратов видно, что ближе всех к полноразмерной матрице подходит матрица формата APS-C.
Матрицы формата APS-C применяются в основном на зеркальных фотоаппаратах.
В последней графе таблицы размеров матриц цифровых фотоаппаратов указан Кроп-фактор. Это коэффициент, характеризующий отношение линейных размеров кадра 35мм фотопленки к соответствующим размерам матрицы цифрового фотоаппарата. И чем он меньше, тем ближе к фотоаппарату с полноразмерной матрице.
Для добавления комментариев вам необходимо зарегистрироваться на сайте.
Источник: http://foto-kan.ru/matritsa-fotoapparata/razmery-matrits-tsifrovykh-fotoapparatov.html
Какая матрица для фотоаппарата лучше: как выбрать
Покупая фотоаппарат, неважно какой: профессионального класса или рядовой бюджетный компакт для съемок друзей и семьи на природе, хочется, чтобы снимки получались качественными, а сам аппарат давал как можно больше свободы.
Зная, какая матрица для фотоаппарата лучше, можно не впадать в ступор в магазине при виде двух моделей разных марок, которые выглядят одинаково, но стоят очень по-разному.
Все дело в сенсоре, который и отвечает за то, какое изображение будет получаться и насколько гибкие рамки пользования фотоаппаратом будут у владельца.
Совет
Матрицы цифровых фотоаппаратов делятся на два основных типа по применяемым полупроводникам и технологии считывания информации.
- Тип матрицы ПЗС (CCD) — самый распространенный. Это достаточно дешевая технология, информация об изображении считывается последовательно с каждой ячейки.
- КМОП матрицы CMOS дороже, но эффективнее в плане скорости работы, поскольку позволяют считывать данные сразу со всех светочувствительных элементов. Такие сенсоры устанавливаются в дорогих камерах, поскольку ни один производитель не пройдет мимо шанса предоставить пользователю возможности съемки с очень малыми выдержками, что в свою очередь усложняет аппаратно-программный комплекс.
Большинство фотоаппаратов пользовательского класса оснащено ПЗС матрицами.
При этом ставится вполне ожидаемое условие: для получения действительно качественных снимков при естественном освещении (или при недостаточном) лучше использовать штатив, поскольку время выдержки будет значительным. Аналогично — не получится делать снимки крайне быстро, поскольку нужно время на получение и обработку изображения.
Некоторые производители решают последнюю проблему достаточно просто: оснащают фотоаппараты буфером памяти. Туда помещаются кадры до обработки, когда ведется съемка в так называемом спортивном режиме — серией за короткий промежуток времени.
Дорогие фотокамеры, оснащенные КМОП матрицами, позволяют делать снимки «с рук» с малой выдержкой, имеют высокую светочувствительность и низкий уровень шума. С помощью такого оборудования можно проводить экспонометрию, снижается время автофокусировки, естественно, легко сделать хороший кадр.
Еще одна технология, которая применяется в самой дорогой фототехнике — многослойные матрицы. Это не очередной пункт в списке «виды матриц». Светочувствительная зона таких аппаратов состоит из трех слоев ПЗС, каждый из которых считывает только один цвет. В результате качество изображения просто потрясает. Техника с данной технологией особо маркируется: 3CCD.
Последнее, что стоит упомянуть, – технологические размеры матриц. ПЗС сенсоры можно сделать маленькими, они построены на кремниевых элементах. А КМОП матрицы достаточно большие, что является еще одним рациональным доводом в пользу их применения в дорогой профессиональной технике.
Количественный показатель качества
Задавая себе вопрос, какая матрица фотоаппарата лучше,- можно достаточно быстро получить ответ без необходимости вникать в технологические особенности. Обратите внимание на следующие характеристики:
- заявленное количество мегапикселей в характеристике камеры;
- эффективное количество пикселей, которое ответственные производители указывают в документации к фотоаппарату;
- возможные размеры изображений, которые можно делать с помощью камеры.
Производители дешевых моделей фотоаппаратов часто лукавят, указывая, прежде всего, размерность картинки и выставляя огромные цифры как эффективный рекламный ход.
Это не говорит о качестве получаемых снимков. Типы матриц фотоаппаратов могут быть разного класса.
Однако если сенсор не имеет достаточной разрешающей способности, большие изображения на выходе будут иметь низкую детализацию и высокий уровень шума.
Еще больше о качестве камеры скажет соотношение между заявленными мегапикселями матрицы и количеством эффективных точек. Это напрямую говорит о применяемой оптике. Если аппаратная часть выполнена ответственно, заявленное и эффективное количество пикселей будет почти одинаково, что не только положительно характеризует продажную цену, но и напрямую отвечает за качество снимков.
Светочувствительность и шумы
Светочувствительность матрицы — еще одна характеристика, которая описывает фотоаппарат. Покупать камеру стоит, ориентируясь на планируемые возможности применения.
Сегодня в документации в графе светочувствительности можно встретить очень высокие цифры — до 51000 и больше. Однако это не говорит напрямую о возможности делать качественные снимки.
Нет и рекомендаций, какой должна быть светочувствительность. Работает все следующим образом:
- для получения хорошего изображения требуется обеспечить выдержку, время которой зависит от уровня освещенности и светочувствительности матрицы;
- при среднем и низком освещении приходится применять штатив;
- если хочется продолжать снимать «с рук», можно программно поменять уровень светочувствительности матрицы в настройках фотоаппарата.
Однако высокая светочувствительность при малой установленной выдержке — это прямой путь к появлению шумов на снимке. Повышенная зернистость, появление мозаики — это те черты, которые раздражают и требуют тщательной вторичной обработки изображения.
Уровень светочувствительности является определяющим только при четком осознании того, в каких именно условиях будет использоваться камера. К примеру, при работе со штативом можно покупать фотоаппарат с высоким показателем, это даст широкие возможности съемки при самых разных освещениях без применения вспышки.
Физическая геометрия сенсора
Физический размер матрицы фотоаппарата в миллиметрах — еще один фактор, который не только напрямую отвечает за качество снимков, но и очень сильно формирует цену камеры.
У самых лучших моделей соотношение размерности, которое основано на стандартном формате пленки 35 мм, близко к единице.
Обратите внимание
Чем дешевле модель, тем выше показатель «кроп», обрезки, который сигнализирует о том, что матрица меньше по габаритам.
Чем меньше площадь сенсора, тем ниже охват визуального пространства перед объективом и:
- ниже общее количество света, которое падает на матрицу, следовательно, приходится повышать светочувствительность и увеличивать цифровой шум;
- больше теряется малых деталей, появляется размытие, это вызывают малые размеры, до которых преобразуется кадр.
Высокие значения кропа в фотоаппарате также означают, что разница в освещенности объектов в поле зрения фотоаппарата будет сглаживаться, что очень негативно сказывается на снимках, полученных в вечернее время без вспышки, например.
Коэффициент размерности указывается в документации к камере. Неважно, ориентируетесь ли на бюджетную или профессиональную модель — лучше будет купить аппарат с большой в геометрическом смысле матрицей.
Заключение
Невозможно сказать, какая матрица лучше. Выбирать фотоаппарат следует исходя из режимов, в которых он будет использоваться. Невозможно провести и всесторонне сравнение матриц фотоаппаратов – каждая проиграет в каком-то случае.
Правильно предсказанные условия съемок позволят камерам даже с относительно посредственными матрицами делать очень хорошие снимки. Главный фактор, который нужно учитывать обязательно — геометрические размеры матрицы. Тем, кто хочет получать действительно большие изображения в пикселях, также нужно обратить внимание на количество эффективных мегапикселей фотоаппарата.
Источник: https://TehnoPanorama.ru/fotoapparaty/matritsa-fotoapparata-kakaya-luchshe.html
Матрица фотоаппарата – какая лучше?
Каждый, кто планирует заниматься фотосъемкой, ответственно подходит к выбору самого устройства. И это правильно. В первую очередь каждый любитель и профессионал обращает внимание на качество матрица.
Ее размер — это очень важный параметр, но сперва стоит познакомиться с самим устройством, что представляет из себя матрица фотоаппарат.
Какая лучше? — с этим мы и разберемся в этой статье, а для этого нужно удариться в изучение всех ее характеристик.
к содержанию ↑
Матрица. Что она из себя представляет?
Матрица — это поверхность, на которую попадает свет и создает электрические импульсы. Это явление обрабатывается процессором, после чего информация записывается в виде цифровых значений. Другими словами, фотодатчик оцифровывает лучи света, которые в дальнейшем мы можем пронаблюдать в виде сделанной фотографии.
к содержанию ↑
Разрешение
Фотодатчик представляет из себя множество датчиков пикселей. Количество этих пикселей характеризует разрешение оцифрованного изображения. Детализация обусловлена числом этих пикселей. Теперь вы понимаете, от чего именно зависит четкость изображения. Для DSLR-камер это количество называется мегапикселями.
Современные технологии имеют до 30 миллионов пикселей. Размер матрицы обратно пропорционально влияет на глубину резкоти фотоснимка. Также этот параметр влияет и на размеры пикселя, только уже прямо пропорционально. Не трудно сделать вывод, что от размеров зависит и светочувствительность, и цветопередача.
Размер матрицы фотоаппарата, какой лучше выбрать? Давайте сперва разберемся с его предназначением.
к содержанию ↑
Физический размер матрицы
Именно этот параметр играет одну из самых главных ролей в работе фотоаппарата. Очевидно, что речь идет про геометрические размеры. Ширина и длина сенсорного датчика измеряется в миллиметрах, а в некоторых камерах может быть переведена в дюймы.
От этого размера зависит и цифровой шум, который возникает при переносе основного сигнала на передатчик фотокамеры. От площади зависит и то, сколько света попадет на сенсор.
В последнее время принято брать во внимание и коэффициент “crop factor”, который показывает отношение сенсора и полного кадра.
Светочувствительность
Светочувствительностью называется свойство пленок или матриц, которые выполнены из материала, чувствительного к свету. Этот параметр характеризует скорость “впитывания” света. По стандартам этот параметр принято обозначать как ISO.
Именно этот показатель указывает на способность усиления сигнала. Все это означает, что высокое значение ISO приведет к большему усилению сигнала, но не получится избежать усиления шумов. Поэтому большие значения — это не всегда показатель качества.
Самое оптимальное значение ISO должно быть где-то 400 единиц.
Вот мы и перешли к самому главному вопросу: какой тип матрицы лучше для фотоаппарата?.
Типы матриц фотоаппаратов
Выделяют следующие типы матриц, которые зависят от вида используемого светофильтра:
- RGB — это самый дешевый тип, имеющий самое большое распространение в фото-технике.
- RGBW. Модели с таким типом обойдутся чуть дороже, но, как известно, за качество нужно платить. RGBW удобно использовать в слабоосвещенных местах.
- RGBE. В таких матрицах установлен фильтр Баера, что положительно сказывается на цветовой гамме фотоснимка. Цвета таких фотографий наиболее максимально приближены к естественным.
Также можно классифицировать датчики по двум разным типам сенсоров:
- CCD (ПЗС). Обеспечивает последовательное считывание с ячеек информации.
- CMOS (КМОП). Считывает данные отдельно по конкретному адресу нужной ячейки.
В чем же еще их различия?
- Матрицы ПЗС требовательны по времени к “созданию” фотографии. Такие устройства невыгодно использовать для быстрой съемки.
- Если вы заинтересованы в автоматической фокусировке или экспонометрии, то CMOS типа bsi — это самый лучший вариант для приобретения.
- CCD-матрица имеет неоспоримое преимущество над CMOS — это ее малые габариты. Поликремниевый светодиод позволяет достичь меньших размеров этого элемента, но он же пагубно влияет на качество снимков в тех помещениях, которые оборудованы слабым освещением.
- В структуре CMOS-матрицы использованы полупроводники из металлооксидных материалов, которые приводят к большему размеру, но позволяют получить лучшее качество фотоснимков.
к содержанию ↑
Что же в итоге лучше?
Объективного мнения на этот счет найти невозможно, поскольку каждая технология имеет неоспоримые достоинства и недостатки. Да и все, по большей степени, зависит от сферы их применения.
к содержанию ↑
Видеоматериал
Надеемся, что, опираясь на прочитанное, вы смогли определить, какой тип матрицы лучше для фотоаппарата для вас. Удачных кадров!
Источник: https://serviceyard.net/gadgets/matritsa-fotoapparata-kakaya-luchshe.html
Матрица фотоаппарата
Никого сейчас не удивишь цифровой фото камерой, каждая из которых наделена матрицей фотоаппарата. Что такое матрица фотоаппарата, почему ее название матрица цифрового фотоаппарата, какие ее функции.
Почти два столетия прошло с тех пор, как был создан первый прототип фотоаппарата. Принцип работы фотокамеры остался прежним: попадание светового потока через объектив и фиксация на светочувствительном элементе. Ранее использовались пленочные элементы с свойственной им химической реакцией. Новая эра фотоаппаратов преподнесла нам цифровые фотокамеры.
Матрица фотоаппарата, а точнее матрица цифрового фотоаппарата — это электронная схема, состоящая из миллионов крошечных светочувствительных диодов, которые реагируют на световой поток, попадающий на них. Один такой светодиод матрицы цифрового фотоаппарата приносит вашему изображению ровно один пиксель.
Теперь представьте себе матрицу фотоаппарата, передающую 12 миллионов пикселей. Сложно? Вовсе нет: 12 мегапикселей — это площадь матрицы в пикселях. К примеру, если соотношение сторон матрицы 3:4, то на матрице цифрового фотоаппарата будет располагаться 3 тысячи пикселей в столбце и таких столбцов 4 тысячи.
Как выглядит матрица фотоаппарата. Какой физический размер матрицы фотоаппарата?
Особенность электроники матрицы цифрового фотоаппарата заключается в накоплении эклектического заряда в зависимости от количества попадающего света на матрицу фотоаппарата.
Если происходит переизбыток энергии на пикселе или группе пикселей матрицы цифрового фотоаппарата, то эта энергия начинает переходить на соседние пиксели.
В результате, когда фотографируете солнце вы получаете световой пучок разной окружности.
Важно
Важно знать: чем качественнее и дороже матрица, а главное, чем больше физический размер матрицы цифрового фотоаппарата, тем больше расстояние между её пикселями, тем менее заметен эффект распределения энергии на соседние пиксели.
Количество пикселей на матрице должно увеличиваться с увеличением качества иили размера матрицы цифрового фотоаппарата. Иначе, новые пиксели теряют свою эффективность. Размер матрицы цифрового фотоаппарата — важная характеристика!
Для начала, что это такое. Раньше, в эпоху пленочных фотоаппаратов с этим было просто — вместо матрицы была светочувствительная пленка-негатив. Стандарт был 35мм (физический размер 24×36 мм).
В современном же цифровом фотоаппарате вместо пленки устанавливается светочувствительная матрица – интегральная микросхема, состоящая из светочувствительных элементов (фотодиодов). Матрица предназначена для преобразования спроецированного на нее оптического изображения в поток цифровых данных.
Фотоматрица оцифровывает («нарезает» на пиксели) то изображение, которое формируется объективом фотоаппарата.
Существуют несколько типов матриц, применяемых в цифровых камерах, основные из которых CCD и CMOS. CCD-матрица обеспечивает лучшие показатели при съемке динамичных и мелких объектов, у нее низкий уровень шума и высокий коэффициент заполнения. CMOS-матрица же используется в изделиях, для которых критична конечная стоимость, благодаря своей недорогой стоимости, низкого энергопотребления.
Итак, физический размер матрицы. Необходимо отметить, что физический размер матрицы — одна из важнейших характеристик фотоаппарата, влияющих на качество получаемых фотографий. Физический размер — это ее геометрический размер (длина и ширина в миллиметрах).
Однако чаще всего размеры фотосенсоров чаще всего обозначают в виде дробных частей дюйма, например 1 / 2.5″. Так как эта величина обратная, то и соответственно, размер матрицы больше, если число после дроби меньше.
Для примера, приведем соотношение наиболее часто используемых матриц:
Диагональ матрицы | Геометрический размер |
1 / 3.2″ | 3.4 х 4.5мм |
1 / 2.7″ | 4.0 х 5.4мм |
1 / 2.5″ | 4.3 х 5.8мм |
1 / 2.3″ | 4.6 х 6.2мм |
1 / 1.8″ | 5.3 х 7.2мм |
2 / 3″ | 6.6×8.8мм |
1″ | 9.6 х 12.8мм |
APS-C (матрица, в 1.6 раза меньше APS) | 15 х 23мм |
полный формат (APS) | 24 х 36мм |
Проще ориентироваться не на размер матрицы в обратных значениях дюйма, а на кроп-фактор. Кроп-фактор — это коэффициент, показывающий во сколько раз матрица фотоаппарата меньше полного формата. Например, для наиболее распространенного размера матрицы современных мыльниц 1 / 2.3″ кроп-фактор составит 5.62, т.е. матрица в 5.62 раза меньше полноформатной.
Размер матрицы влияет на количество цифрового шума, передаваемого вместе с основным сигналом на матрицу. Наличие цифрового шума, в свою очередь, придает фотографии неестественный вид и создается впечатление, что на фотографии наложена матовая пленка.
Чем больше физический размер матрицы, тем больше ее площадь и тем больше света на нее попадает, в результате чего полезный сигнал матрицы будет сильнее и соотношение сигнал / шум будет лучше.
Это позволяет получать более яркую, качественную картинку с естественными цветами.
Источник: http://nikon3100.ru/statii/matrica-fotoapparata
% PDF-1.4 % 1374 0 объект > эндобдж xref 1374 80 0000000016 00000 н. 0000002429 00000 н. 0000002577 00000 н. 0000003363 00000 н. 0000003688 00000 н. 0000003768 00000 н. 0000005982 00000 п. 0000006187 00000 н. 0000007970 00000 п. 0000008701 00000 п. 0000009210 00000 п. 0000009447 00000 н. 0000010502 00000 п. 0000011691 00000 п. 0000012851 00000 п. 0000014015 00000 п. 0000015732 00000 п. 0000015989 00000 п. 0000016073 00000 п. 0000016130 00000 п. 0000016166 00000 п. 0000016196 00000 п. 0000016273 00000 п. 0000016388 00000 п. 0000035570 00000 п. 0000035892 00000 п. 0000035961 00000 п. 0000036079 00000 п. 0000036196 00000 п. 0000036232 00000 п. 0000036309 00000 п. 0000044980 00000 п. 0000045314 00000 п. 0000045383 00000 п. 0000045501 00000 п. 0000045617 00000 п. 0000045730 00000 п. 0000047075 00000 п. 0000047395 00000 п. 0000047758 00000 п. 0000047844 00000 п. 0000050958 00000 п. 0000051374 00000 п. 0000051884 00000 п. 0000053259 00000 п. 0000053618 00000 п. 0000053980 00000 п. 0000067763 00000 п. 0000115769 00000 н. 0000115882 00000 н. 0000115981 00000 п. 0000116172 00000 н. 0000116202 00000 н. 0000116333 00000 п. 0000116432 00000 н. 0000116622 00000 н. 0000116699 00000 н. 0000116825 00000 н. 0000117093 00000 н. 0000117170 00000 н. 0000117442 00000 н. 0000117519 00000 н. 0000117635 00000 н.; p! XW | / d2] ZGx4 ## \ T { -Xa @
Инструмент преобразованиядюймов в MM
Что такое дюйм?
дюйм, обозначаемый символом «In», популярная единица, используемая для описания длины в США и британской системе мер обычные системы, предназначенные для измерения.Был определен дюйм в масштабе, равном 25,4 миллиметра в 1959 году. Если вы посмотрите на 1 фут, то в сумме будет 12 дюймов. один фут, в то время как ярд составляет 36 дюймов. Если вы находите сложно оценить размер любого объекта, вы можете воспользоваться нашим конвертер дюймов в миллиметры, чтобы оценить точный размер.
История : дюймов — это термин, образованный от латинской единицы. «Унция», равная 1/12 римской стопы.В прошлом дюйм последовало быстрое изменение установленных стандартов. В настоящее время определение было основано на International Yard. Один из самые ранние определения дюйма фактически были установлены на основе ячменя. Здесь размещены три сухих зерна ячменя круглой формы. один за другим равнялись дюйму.
Текущее использование: Измерительная единица «Дюйм» широко используется в такие места, как Канада, Великобритания и США.S. Это также используется в таких местах, как Япония, для изготовления электронных деталей и т. п. такие элементы, как размер экрана дисплея. Итак, если вы планируете покупая любое электронное устройство и хотите получить хорошее представление о измерения, вы можете использовать конвертер дюймов в миллиметры для тоже самое.
Что такое миллиметр?
Миллиметр, обозначаемый буквой «мм», — это единица измерения длины, используемая в международной системе единиц СИ. это обозначается в метрах как 1/1000 метра.
История: Миллиметр на самом деле является частью приставки что обозначает 1/1000 базовую единицу, которая является Метром. Со временем определение метра сильно изменилось. Текущее описание это же расстояние, пройденное за определенное время. Как видно для большинства единиц СИ определение счетчика меняется со временем. если ты боролись с размером небольшого объекта, убедитесь, что вы используете наш конвертер дюймов в миллиметры для того же.
Метрические преобразования: дюймы в миллиметры
Мы предоставляем вам масштабируемый инструмент для онлайн преобразование для каждого типа единиц, определенных для измерения в соответствии с международные стандарты. Вы можете найти самые точные дюймы для миллиметровый преобразователь здесь, а также несколько основных преобразований единиц в наличии при вашем разгоне.
Основные числа для перевода дюймов в мм
Согласно действующим стандартам,
- 1 дюйм = 0.039370 мм (25,4 мм)
- 1 мм = 3/64 дюйма ((0,0393700787 дюйма)
Общие места, где мы используем дюймы в качестве единицы измерения длины
- Использование дюймов можно проследить по свидетельствам в 7 век, где он был определен как длина трех ячменя.
- В 1933 году даже Американская ассоциация стандартов также приняла это значение в их стандартных единицах измерения длины.
- Даже в 12 веке жители Шотландии использовали дюйм как единица измерения. Они определили дюйм как эквивалент длина большого пальца человека.
- В 1959 году США и Великобритания подписали договор о принятии и исправить общее определение дюйма для содружества страны.
- В США, прежде всего, все дорожные знаки, и количество относящиеся к расстоянию и скорости измеряются в дюймах как единица длины.
Вещи, измеряемые в миллиметрах
Есть несколько вещей, которые можно легко измерить с помощью миллиметров. Сюда входят:
- Скрепки
- Ширина ластика
- Длина ластика
- Длина грифеля для карандаша
- Длина и ширина бытовой батареи
- Ногти
Однако имейте в виду, что миллиметр в основном используется для точного измерения малых предметы.Итак, выбирая инструменты для преобразования дюймов в миллиметры, вы можете использовать наш высокоточный инструмент для получения лучших результатов.
Как использовать вышеуказанный инструмент для простого преобразования дюймов в миллиметры?
Следуйте приведенным ниже инструкциям, чтобы легко и быстро преобразовать любое количество из дюймов в миллиметры.- Просто откройте инструмент и введите значение в поле ниже мм, значение необходимо перевести в миллиметры.
- Если вы ввели значение, просто нажмите на преобразование. вкладка, чтобы позволить инструменту запустить набор инструкций на ввод значение для получения желаемых результатов.
- Окончательное количество, отображаемое на вкладке расчета, является желаемый результат.
- Вы можете напрямую использовать отображаемое значение как и где угодно требуемый вами.
— дюймы в мм
Гаечный ключ — дюймы в ммEngineering ToolBox — ресурсы, инструменты и базовая информация для проектирования и разработки технических приложений!
– поиск — самый эффективный способ навигации по Engineering ToolBox!
Таблица преобразования гаечного ключа и гаечного ключа из SAE в метрические
Стандартный размер гаечного ключа SAE для США (дюймы) | Метрический размер гаечного ключа (мм) | 3.18 | ||
---|---|---|---|---|
5/32 | 3,97 | |||
4 | ||||
3/16 | 4,76 | |||
5 | ||||
13/64 | 5,16 | 5,56 | ||
15/64 | 6,05 | |||
6 | ||||
1/4 | 6,35 | |||
17/64 | 6,75 | / 32 | 7.14 | |
5/16 | 7,94 | |||
8 | ||||
11/32 | 8,73 | |||
9 | ||||
3/8 | ||||
11 | ||||
7/16 | 11,11 | |||
15/32 | 11,91 | |||
12 | ||||
1/2 | 12.7 | |||
13 | ||||
17/32 | 13,49 | |||
14 | ||||
9/16 | 14.29 | |||
15 | ||||
15 | ||||
5/8 | 15,88 | |||
16 | ||||
21/32 | 16,67 | |||
17 | ||||
11/16 | 17.46 | |||
18 | ||||
19 | ||||
3/4 | 19,05 | |||
25/32 | 19,84 | |||
20 | ||||
21 | ||||
22 | ||||
7/8 | 22.23 | |||
23 | ||||
29/32 | 23.02 | 81 | ||
24 | ||||
31/32 | 24,61 | |||
25 | ||||
1 | 25,40 | |||
26100 | ||||
26100 | ||||
27 | ||||
28 | ||||
1 1/8 | 28,58 | |||
29 | ||||
30 | ||||
1 3/16 30.16 | ||||
31 | ||||
1 1/4 | 31,75 | |||
32 | ||||
33 | ||||
1 5/16 | 33,34 | 33,34 | 1 3/8 | 34,93 |
35 | ||||
36 | ||||
1 7/16 | 36,51 | |||
38 | 110 | |||
39 | ||||
1 9/16 | 39,69 | |||
40 | ||||
41 | ||||
1 5/8 | 41116 11/11 | 11/1142,86 | ||
1 3/4 | 44,45 | |||
46 | ||||
1 13/16 | 46,04 | |||
1 7/8 | 47,63 | 49.21 | ||
50 | ||||
2 | 50,80 | |||
51 | ||||
2 1/8 | 53.96 | |||
54 | ||||
2 3/8 | 60,33 | |||
2 1/2 | 63,5 |
Связанные темы
Сопутствующие документы
Поиск по тегам
- en: гаечный ключ дюймы 6 метрическая конверсия: g llave convertión métrica
- de: Schlüssel Zoll metrische Umwandlung
Перевести эту страницу на
О Engineering ToolBox!
Мы не собираем информацию от наших пользователей.В нашем архиве хранятся только письма и ответы. Файлы cookie используются в браузере только для улучшения взаимодействия с пользователем.
Некоторые из наших калькуляторов и приложений позволяют сохранять данные приложений на локальном компьютере. Эти приложения — из-за ограничений браузера — будут отправлять данные между вашим браузером и нашим сервером. Мы не сохраняем эти данные.
Google использует файлы cookie для показа нашей рекламы и обработки статистики посетителей. Пожалуйста, прочтите Условия использования Google для получения дополнительной информации о том, как вы можете контролировать показ рекламы и собираемую информацию.
AddThis использует файлы cookie для обработки ссылок на социальные сети. Пожалуйста, прочтите AddThis Privacy для получения дополнительной информации.
Цитирование
Эту страницу можно цитировать как
- Engineering ToolBox, (2010). Гаечный ключ — дюймы в мм . [онлайн] Доступно по адресу: https://www.engineeringtoolbox.com/wrenches-inches-metric-us-conversion-comparison-d_1607.html [день доступа, месяц, год].
Изменить дату доступа.
. .закрыть
Научный онлайн-калькулятор
6 3
.Таблица перевода дюймов в мм
Товар был успешно добавлен в вашу корзину.
В корзину ПродолжатьЧтобы проанализировать данные, полученные в лаборатории, чтобы определить их значимость, вы должны сначала оценить свои данные со статистической точки зрения. Система размеров, в частности длина, варьируется между английской и метрической системами. Дюйм (символ: дюйм) — это единица измерения длины в британской (Великобритания) и американской системах измерения.Дюйм в основном используется в США, Канаде и Великобритании. В следующей таблице показано преобразование длины в метрические / дюймы.
Как преобразовать дюймы в миллиметры:
Размеры — дюймы в метрические единицы | Размеры — в дюймах | ||||
Десятичные дюймы | Дробные дюймы | Метрическая система | Метрическая система | Десятичные дюймы | |
0.031 ” | 1/32 ” | 0,79 мм | 1.0 мм | 0,039 дюйма | |
0,062 дюйма | 1/16 ” | 1,57 мм | 1,8 мм | 0,071 дюйма | |
0,125 дюйма | 1/8 дюйма | 3,18 мм | 2,0 мм | 0,079 дюйма | |
0,188 дюйма | 3/16 дюйма | 4.78 мм | 3,0 мм | 0,118 дюйма | |
0,250 дюйма | 1/4 дюйма | 6,35 мм | 3,2 мм | 0,126 дюйма | |
0,313 дюйма | 5/16 ” | 7,95 мм | 4,0 мм | 0,157 дюйма | |
0,375 дюйма | 3/8 дюйма | 9,53 мм | 4.3 мм | 0,169 дюйма | |
0,438 дюйма | 7/16 ” | 11,13 мм | 4,6 мм | 0,181 дюйма | |
0,500 ” | 1/2 ” | 12,70 мм | 5,0 мм | 0,197 дюйма | |
0,563 дюйма | 9/16 ” | 14,30 мм | 6.0 мм | 0.236 ” | |
0,625 дюйма | 5/8 ” | 15,88 мм | 7,0 мм | 0,276 дюйма | |
0,688 дюйма | 11/16 ” | 17,48 мм | 8,0 мм | 0,315 дюйма | |
0,750 ” | 3/4 дюйма | 19,05 мм | 9,0 мм | 0,354 дюйма | |
0.813 ” | 13/16 ” | 20,65 мм | 1,0 см | 0,394 дюйма | |
0,875 ” | 7/8 ” | 22,23 мм | 2,0 см | 0,787 ” | |
0,938 ” | 15/16 ” | 23,83 мм | 3,0 см | 1,181 дюйма | |
1 дюйм | 1 дюйм | 2.54 см | 4,0 см | 1,575 ” | |
2 дюйма | 2 дюйма | 5,08 см | 5,0 см | 1.969 ” | |
3 дюйма | 3 дюйма | 7,62 см | 6,0 см | 2.362 ” | |
4 дюйма | 4 дюйма | 10,16 см | 7.0 см | 2,756 дюйма | |
5 дюймов | 5 ” | 12,70 см | 8,0 см | 3,150 дюйма | |
6 дюймов | 6 дюймов | 15,24 см | 9,0 см | 3,543 дюйма | |
7 дюймов | 7 дюймов | 17,78 см | 10,0 см | 3.937 ” | |
10 ” | 10 ” | 25,40 см |
Формула коэффициентов преобразования
Дюймы в миллиметры Дюймы x 25,4 мм / дюйм
Дюймы в сантиметры Дюймы x 2,54 см / дюйм
Дюймы в микроны Дюймы x 25,4 мм / дюйм. x 1000 мкм / мм
Пример: выбор шприцевого фильтра по диаметру (мм, преобразованные в дюймы)
Шприцевой фильтр выбирается в зависимости от фильтруемого объема и размера.При наличии множества доступных шприцевых фильтров понимание роли диаметра, размера пор и мембраны поможет в правильном выборе. Объем пробы будет определять выбор диаметра, гарантируя, что фильтр не будет перегружен. При выборе шприцевых фильтров по диаметру помогает следующая таблица:
Для малых объемов (<1 мл) шприцевых фильтров диаметром 3 мм или 0,118 дюйма
Для средних объемов (1-10 мл) 15 мм или 0,590 дюйма
для больших объемов (> 10 мл) выбирается 25 мм или 0,984 дюйма
дюймов в мм Преобразование (дюймы в миллиметры)
Введите длину в дюймах ниже, чтобы преобразовать значение в миллиметры.
Перевод дюймов в миллиметры
Самый быстрый и простой способ конвертировать дюймы в миллиметры (миллиметры) — использовать эту простую формулу:
миллиметры = дюймы × 25,4
Так как в одном дюйме [1] 25,4 миллиметра, длина в миллиметрах равна дюйму, умноженному на 25,4. Таким образом, формула для преобразования дюймов в миллиметры — это длина, умноженная на 25,4.
Например, вот как преобразовать 5 дюймов в миллиметры, используя формулу выше.5 «= (5 × 25,4) = 127 мм
Сколько миллиметров в дюйме?
В дюйме 25,4 миллиметров, поэтому мы используем это значение в приведенной выше формуле.
1 «= 25,4 мм
Наш калькулятор дюймовой доли может добавлять дюймы и миллиметры вместе, а также автоматически преобразует результаты в стандартные американские, британские и метрические значения в системе СИ.
Для измерения длины используются дюймы и миллиметры. Продолжайте читать, чтобы узнать больше о каждой единице измерения.
Дюйм — это единица измерения линейной длины, равная 1 / 12 фут или 1 / 36 ярда. Поскольку международная ярд равняется точно 0,9144 метра, один дюйм равен 2,54 сантиметру. [2]
Дюйм — это стандартная британская единица измерения длины в США. Дюймы могут быть сокращены как в ; например, 1 дюйм можно записать как 1 дюйм
Дюймы также могут быть обозначены с помощью символа ″ , иначе известного как двойной штрих. Часто для удобства вместо двойных штрихов используются двойные кавычки («). Двойной штрих обычно используется для выражения 1 из как 1 ″.
Стандартная линейка имеет 12 дюймов и является обычным измерительным инструментом для измерения дюймов. Их также часто измеряют с помощью рулетки, которая обычно бывает длиной от 6 футов до 35 футов. К другим типам измерительных устройств относятся весы, штангенциркуль, измерительные колеса, микрометры, линейки и даже лазеры.
Один миллиметр равен одной тысячной (1/1000) метра, который определяется как расстояние, которое свет проходит в вакууме за 1 / 299 792 458 секунд.
Миллиметр или миллиметр кратны метру, который является базовой единицей измерения длины в системе СИ. В метрической системе «милли» является префиксом для 10 -3 . Миллиметры могут быть сокращены до мм ; например, 1 миллиметр можно записать как 1 мм.
Миллиметры часто представлены самыми маленькими штрихами на большинстве метрических линеек. Чтобы получить ориентир по размеру, толщина десятицентовика США равна 1.35мм. [3]
Мы рекомендуем использовать линейку или рулетку для измерения длины, которую можно найти в местном магазине или на дому. Доступны линейки в британской, метрической системе или в сочетании с обоими значениями, поэтому убедитесь, что вы выбрали правильный тип для своих нужд.
Нужна линейка? Попробуйте наши бесплатно загружаемые и распечатываемые линейки, которые включают в себя британские и метрические единицы измерения.
Влияние размера матрицы на качество изображения КТ легкого сверхвысокого разрешения: сравнение 512 × 512, 1024 × 1024 и 2048 × 2048
Обоснование и цели
Это исследование было направлено на оценку влияния матрицы размер от пространственного разрешения и качества изображения компьютерной томографии сверхвысокого разрешения (U-HRCT).
Материалы и методы
Щелевые фантомы и 11 трупных легких сканировали на U-HRCT. Щелевые фантомные сканы были реконструированы с использованием поля зрения (FOV) 20 мм с размером матрицы 1024 и поля зрения 320 мм с размерами матрицы 512, 1024 и 2048. Сканы трупного легкого были реконструированы с использованием размеров матрицы 512, 1024 и 2048. Три наблюдателя субъективно оценили изображения по трехбалльной шкале (1 = худшее, 3 = лучшее) с точки зрения общего качества изображения, шума, артефактов в виде полос, сосудов, бронхов и результатов изображения.Средний балл трех наблюдателей оценивался с помощью знакового рангового теста Вилкоксона с поправкой Бонферрони. Шум измеряли количественно и оценивали с помощью теста Тьюки. Значение P <0,05 считалось значимым.
Результаты
Максимальное пространственное разрешение 0,14 мм; среди изображений с полем обзора 320 мм матрица 2048 имела самое высокое разрешение и была значительно лучше, чем матрица 1024 с точки зрения общего качества, твердого узелка, непрозрачности матового стекла, эмфиземы, внутрилобулярной ретикуляции, сот и прозрачности сосудов ( Р <.05). Матрицы 2048 и 1024 работали значительно лучше, чем матрица 512 ( P <0,001), за исключением шума и артефактов из полос. Визуальный и количественный шум значительно уменьшился в порядке 512, 1024 и 2048 ( P <0,001).
Заключение
При сканировании U-HRCT большой размер матрицы сохранял пространственное разрешение и улучшал качество изображения и оценку заболеваний легких, несмотря на увеличение шума изображения по сравнению с размером матрицы 512.
Ключевые слова
Компьютерная томография сверхвысокого разрешения
Размер матрицы
Качество изображения
пространственное разрешение
Рекомендуемые статьиЦитируемые статьи (0)
Просмотр аннотации© 2018 Ассоциация университетских радиологов. Опубликовано Elsevier Inc.
Рекомендуемые статьи
Цитирующие статьи
Система видеостен Clarity Matrix G3 LX LCD
Система видеостен с ЖК-дисплеем Clarity® Matrix® G3 LX разработана для обеспечения выдающейся производительности мозаичного изображения и критически важной надежности с низким энергопотреблением в средах с контролируемым окружающим освещением.Clarity Matrix G3 LX сочетает в себе стандартную яркость 500 нит и ЖК-дисплей со сверхузкой рамкой с усовершенствованиями нового поколения для обработки видео, установки, управления и внешней электроники, чтобы предоставить ведущее в отрасли решение для видеостен для приложений, которым требуется более низкое энергопотребление.
Максимальная визуальная производительность
Clarity Matrix G3 LX может похвастаться узкими лицевыми панелями, с плиточными лицевыми панелями шириной всего 0,88 мм между соседними ЖК-дисплеями, что обеспечивает практически бесшовное решение для видеостены.Clarity Matrix G3 LX обеспечивает бескомпромиссные визуальные характеристики с превосходным качеством изображения, идеально выровненными панелями и сверхвысоким разрешением. Он также включает в себя систему крепления Planar® EasyAxis ™, которая обеспечивает глубину установки всего 3,6 дюйма (91 мм) — самую тонкую в отрасли — для идеального выравнивания панели с панелью. Clarity Matrix G3 LX доступна с Planar® ERO-LCD ™, передней панелью из оптически склеенного стекла, обеспечивающей повышенную прочность и оптические характеристики для общественных мест или интерактивных сенсорных приложений.В серию также входит программное обеспечение Planar® WallDirector ™, которое значительно сокращает время, затрачиваемое на настройку, эксплуатацию и мониторинг видеостены.
Расширенная обработка видеостены
Clarity Matrix G3 LX теперь выводит встроенную обработку видеостены на новый уровень с помощью стороннего видеоконтроллера Planar® WallDirector ™, став первым решением на рынке для видеостены с ЖК-дисплеем, в котором встроена расширенная обработка видео непосредственно в продукт, обеспечивая до (9) выходов 1920×1080 и возможность полной настенной 3×3 от одного контроллера 1U.
Улучшенная обработка видеостены Planar® Big Picture Plus ™ обеспечивает более обширную обработку видеостены как на дисплее, так и вне ее, а также может масштабировать источники по всей видеостене или любой части видеостены, включая несколько сигналов 4K @ 60 Гц.
Используя 4K quadview, пользователи могут комбинировать контент из большего количества независимых источников, накладывать меньшее изображение на большее с помощью Picture-in-Picture (PiP) и объединять до четырех уникальных источников изображения на одном дисплее.Clarity Matrix G3 LX поддерживает новейшие стандарты подключения 4K, включая HDMI 2.0 и DisplayPort 1.2, предлагая клиентам гибкость при построении инфраструктуры видео.
Интегрированная синхронизация с технологией Genlock
Clarity Matrix G3 LX также включает в себя технологию Genlock Planar® WallSync ™, что делает его первой в отрасли полностью интегрированной синхронизированной видеостеной. Planar WallSync решает неприятные проблемы с синхронизацией и синхронизацией видеостены за счет включения функции Smart Genlock, которая автоматически обеспечивает идеально синхронизированное воспроизведение видео без ручной настройки.Planar WallSync поддерживает синхронизацию как с подключенными видеоисточниками, так и с внешними домашними синхронизаторами.
Planar WallSync также исправляет распространенные артефакты разрывов видео, возникающие при воспроизведении видео, содержащего вертикальные элементы контента с горизонтальным движением или панорамированием.
Разработан для критически важных операций
Clarity Matrix G3 LX отличается уникальным внешним видом электроники, обеспечивающим максимальную надежность и минимальное время простоя. Благодаря удаленному источнику питания Planar® (RPS) Clarity Matrix G3 LX выводит свою уникальную архитектуру и критически важный дизайн на новый уровень.Planar RPS оснащен резервными источниками питания n + 1 с возможностью горячей замены, резервированными входными цепями переменного тока, сниженным тепловым напряжением и работоспособностью, а также возможностями мониторинга состояния.
В случае отказа видеостена продолжает работать без сбоев. Для клиентов, доставляющих очень конфиденциальную информацию, опция Clarity® Matrix® Fiber Video Extension обеспечивает более безопасный и дальний вариант для передачи видеосигналов от электроники Clarity Matrix на дисплеи.
Управление калибровкой и единообразием
ЖК-видеостеныClarity Matrix откалиброваны на заводе-изготовителе для обеспечения высочайшего уровня визуального единообразия прямо из коробки.Кроме того, дисплеи Clarity Matrix можно откалибровать в полевых условиях с помощью дополнительного инструмента калибровки Clarity® Matrix® ColorBalance ™, который состоит из фотооптического датчика и программного приложения, которое легко интегрируется с видеоконтроллером Planar.