Что такое матрица? Кроп-фактор?
Прежде, чем купить фотоаппарат, вам необходимо ответить на ряд очень важных вопросов: сколько мегапикселей должна иметь матрица фотоаппарата, будет ли это полнокадровый фотоаппарат или камера с так называемой кропнутой матрицей, а также будет это зеркальный или беззеркальный фотоаппарат? Давайте разберемся с этими понятиями по порядку.
Матрица – это часть фотоаппарата, которая предназначена для регистрации света, проходящего через объектив. По сути, матрицы цифровых фотоаппаратов это аналог фотопленки в пленочных камерах. Матрица состоит из множества светочувствительных элементов – пикселей. Пиксели настолько маленькие и их так много, что для обозначения их количества используют приставку мега-, которая означает миллион. Чтобы понять, какое количество мегапикселей нужно именно вам, нужно определиться, для каких целей вы приобретаете камеру. Если вы планируете использовать ее в личных целях, для съемки бытовых сюжетов и в путешествиях, то вам вполне подойдут камеры с матрицами больше 10 мегапикселей. Если же планируется использовать камеру в коммерческих целях, то стоит задуматься над покупкой камеры с 20-мегапиксельной матрицей. Однако, стоит предостеречь вас от погони за огромными значениями этого параметра. Дело в том, что физический размер матрицы с ростом числа мегапикселей не изменяется, а, следовательно, физический размер самого пикселя будет уменьшаться. Матрицы с 30 и более мегапикселями очень требовательны к качеству применяемой оптики, а также, как правило, они сильнее нагреваются и на изображении появляется цифровой шум, ухудшающий качество.
Теперь давайте разберемся с понятием кропа. Само это слово происходит от английского crop – «обрезать», и в среде фотографов служит для обозначения матриц (и камер с такими матрицами), размер которых меньше, чем размер полнокадровых матриц, которые по площади соответствуют пленочному кадру. Степень уменьшения кроп-матрицы выражается с помощью кроп-фактора. Например, матрица с кроп-фактором 1,5 в полтора раза меньше полнокадровой матрицы. Из вышесказанного можно сделать один важный вывод: если вы планируете покупку камеры с 20- и более мегапиксельной матрицей, то предпочтение лучше отдать полнокадровым камерам, т.к. физический размер пикселя на них будет больше. Но какую камеру выбрать, если речь идет о бытовом использовании? Увы, здесь нет однозначного ответа. Кропнутые камеры меньше и легче своих полнокадровых собратьев, да и стоят они иногда в разы дешевле, однако выбор оптики для них заметно уже, да и само ее качество ниже. Важно также понимать, что производители фототехники просто не станут создавать кропнутую камеру, которая технически близка к полнокадровой – в таком случае их маркетологи просто не смогут убедить людей платить большие деньги за полный кадр. Тем не менее, уровень развития технологий на сегодняшний день так высок, что возможности доступных кропнутых камер даже превышают запросы бытового использования, и в этом случае нет смысла переплачивать значительные деньги за профессиональную технику. Единственным исключением может являться ситуация, когда у вас уже есть хороший набор оптики от пленочного фотоаппарата. Тогда имеет смысл переплатить за полнокадровую камеру, чтобы иметь возможность использовать более высококачественные объективы.
В завершении темы кропнутых и полнокадровых матриц хотелось бы внести ясность и в еще один вопрос. На просторах Интернета часто можно слышать мнение о том, что ГРИП (Глубина Резко Изображенного Пространства) отличается в зависимости от размера матрицы, а у полного кадра существует некий особый рисунок, присущий только этим камерам. Дело в том, что все эти утверждения не имеют ничего общего с техникой и здравым смыслом. ГРИП зависит только от трех параметров – от диафрагмы, фокусного расстояния и от расстояния до объекта съемки. Размер матрицы не оказывает на него никакого влияния. Качество изображения, также как и рисунок, зависят в основном от используемой оптики. Один и тот же объектив на обоих типах матриц даст одинаковое качество изображения. Важно только помнить, что при использовании полнокадрового объектива на кропнутой матрице в поле ее зрения будет попадать лишь часть формируемого объективом изображения. Многие ошибочно называют это увеличением, но это не так. Просто мы фиксируем лишь часть от полной картинки. Чтобы понять какую именно, нужно вновь обратиться к кроп-фактору. Например, если взять полнокадровый объектив с фокусным расстоянием 100 мм и сделать кадр на кроп-матрице с фактором 1,5, то изображение будет таким, как если бы на полнокадровую матрицу сняли кадр на фокусном 150 мм.
В последнее время рынок фототехники все уверенней завоевывают беззеркальные камеры. В чем их плюсы и минусы по сравнению с традиционными зеркалками? Основной плюс кроется в самой конструкции – в них отсутствует громоздкое зеркало и поднимающая его система, которые служат в зеркальных фотоаппаратах для передачи изображения из объектива в оптический видоискатель. За счет этого достигается меньший вес и размеры камеры. К плюсам таких камер относится и электронный видоискатель, который значительно облегчает настройку камеры (особенно для новичков) и использование мануальной оптики. Но есть и минусы – все тот же видоискатель является мощным потребителем электроэнергии и, естественно, приводит к более быстрой разрядке аккумуляторов, которые, к слову, в угоду уменьшения веса и размера и без того уступают аккумуляторам зеркалок. Еще одним минусом оптического видоискателя является его подтормаживание при съемке быстродвижущихся объектов. Поэтому, если вы хотите снимать репортажи, спорт или дикую природу, то, однозначно, ваш выбор это зеркальные камеры с оптическим видоискателем.
что это и почему она так важна?
Поделиться статьёй:
При выборе фотоаппарата нужно учитывать множество нюансов, обращать внимание на каждую деталь. И далеко не последнюю роль в процессе выбора играют именно характеристики матрицы, которой оснащена камера. Что же представляет собой эта самая матрица и почему она так важна? Давайте это выясним!
Содержание статьи:
Общее представление о матрице фотоаппарата
Если вы посмотрите в объектив камеры, вы легко найдете матрицу: видите блестящий прямоугольник в самом центре объектива? Да, это она и есть.
Матрица является важнейшим элементом фотокамеры, отвечающим за то, какое изображение мы получим в результате съемки.
По сути она представляет собой микросхему, которая состоит из светочувствительных элементов. Когда на нее падает свет, начинается формирование электрического сигнала определенного уровня интенсивности, который зависит от степени яркости света. При съемке она фиксирует свет, который впоследствии преобразуется в фотографию.
Кстати, количество мегапикселей, которое имеет фотокамера, также зависит именно от матрицы и может колебаться от 0.3 до 10 и более (чем дороже и качественнее фотоаппарат, тем больше мегапикселей он имеет).
Изначально матрица создает монохромное (ч.б) изображение. В цветное оно преобразуется благодаря светофильтрам, которыми покрываются ее составные части.
Особенности строения матрицы
Что касается структуры матрицы, то она является дискретной и складывается из множества частей, в совокупности преобразующих падающий на нее свет. Один фотодиод в составе создает один пиксель фотографии.
Как вы наверняка знаете, каждое цифровое изображение представляет собой что-то вроде мозаики, состоящей из множества точек, которые в совокупности и являются фотографией. Изображение не «распадается» именно потому, что этих точек очень много и они имеют высокую плотность расположения относительно друг друга. Вполне логично предположить, что если бы плотность их расположения была ниже, мы бы увидели, как изображение распадается на эти самые точки, и это было бы наглядной демонстрацией дискретного характера структуры матрицы.
Матрица как альтернатива пленки
В те времена, когда цифровой фототехники еще не существовало, светочувствительным элементов, выполняющим функции матрицы, была пленка. Если проанализировать устройство пленочных и цифровых фотоаппаратов, можно увидеть, что существенных отличий между ними не так уж много. Основным отличием как раз и будет схема приема и преобразования света.
Как именно происходит процесс приема света в фотокамере с пленкой? В тот момент, когда фотограф нажимает кнопку спуска, затвор открывается, в результате чего пленка принимает свет. До того, как затвор вновь закрывается, идет химическая реакция, а ее итогом является формирование фотографии.
Как вы можете заметить, процесс создания фотоснимка был совершенно иным, и в современных фотоаппаратах матрица выполняет именно функцию пленки, то есть генерирует изображение. Они выполняют совершенно одинаковые функции, разница состоит лишь в технике их выполнения и в хранилище созданного изображения, которым в первом случае выступает пленка, а во втором — карта памяти фотоаппарата.
Характеристики матрицы
Необходимо понимать, что матрицы бывают совершенно разными по качественным показателям. В этом вопросе важным сигналом будет цена: в том или ином ценовом сегменте матрицы имеют определенный уровень качества. Будьте готовы к тому, что бюджетные варианты фотоаппарата вряд ли будут обладать высококачественной матрицей. Поскольку матрицу можно смело назвать сердцем камеры, не стоит экономить при выборе. Вы ведь хотите, чтобы ваши снимки были на высоте? Тогда остановите свой выбор на фотоаппарате, оснащенном качественной матрицей.
По каким параметрам следует выбирать матрицу?
- Размер
- Разрешение
- Соотношение сигнал-шум
- Уровень светочувствительности
- Динамический диапазон
Итак, рассмотрим первый параметр из нашего списка, а именно — размер матрицы. Его определяет величина пикселей, а также плотность их расположения относительно друг друга. Меньшая плотность расположения пикселей дает меньший уровень нагрева матрицы и более сильное соотношение сигнала и шума, которое создает более четкую фотографию.
Учтите, что именно размер матрицы является ее главной характеристикой. При выборе на него нужно обратить особое внимание.
Что же обеспечивает размер матрицы и почему он является таким важным параметром?
Итак, размер матрицы диктует:
- Уровень шума фотографии
- Глубину и насыщенность ее цвета
- Динамический диапазон
- Размер фотокамеры
Больший размер матрицы обеспечивает:
- Низкие показатели шума на фотографии. Матрица, имеющая большую поверхность, принимает больше света. Это будет сопряжено с меньшим нагревом, меньшей погрешностью в процессе квантования, соответственно, меньшим уровнем воздействия нежелательных шумов. Чем больше физический размер матрицы, тем меньше посторонних шумов будет на снимке, даже если съемка осуществляется при низком уровне освещения. Если говорить проще, фотография не будет пестрить лишними точками, точно не способствующими эстетике снимка.
- Широкий динамический диапазон
- Насыщенные, глубокие цвета снимка
Глубина цвета является показателем, который определяет возможность камеры идентифицировать любые метаморфозы цвета, даже самые незначительные. Это особенно ценно для фотографий однотонных пейзажей, не имеющих резких цветовых переходов. Большая матрица способна уловить даже самый незначительный цветовой переход, в то время как маленькая не имеет такой возможности.
Единственный недостаток, с которым придется смириться при выборе большой матрицы, это размер самой камеры. Чем больше матрица, тем больше размер камеры. Строго говоря, это вряд ли можно считать серьезным недостатком, учитывая широкий спектр преимуществ, которые дает матрица большого размера.
Виды матрицы
Он определяет способ работы матрицы.
На этом основании матрицы делят на 2 технологии:
- CMOS
- CCD
Конечная цель является одинаковой: накопление света. Разница в том, что является элементом, составляющим структуру. В первой технологии это диод, а во второй — транзистор.
Если говорить о качестве фотографий, то плюсом CCD-технологии были более приятные глазу цвета, а CMOS-технология выгодно отличалась гораздо меньшим уровнем шума.
В наше время подавляющее большинство камер оснащено матрицей CMOS.
Чувствительность матрицы
Она является очень важным параметром. Чем большую чувствительность установить, тем больше возможность зафиксировать на фотографии плохо освещенные объекты. Но при таких условиях будут также увеличиваться нежелательные шумы.
Параметр IS0 является эквивалентным показателем чувствительности. 50 — самый низкий показатель чувствительности, при котором чистое фото не подвергается разрушению шумом.
Сигнал-шум
Это параметр, который находится в непосредственной связи с чувствительностью. Он определяет уровень света и шумов на снимке.
Нужно помнить, что любое фото имеет определенный показатель шума. Светочувствительность характеризуется тем же. Она не может иметь статичных показателей. Они будут меняться, и эти изменения зависят от условий съемки.
Даже если свет совсем отсутствует, фотодатчик все равно продемонстрирует в итоге определенное значение. Как раз это и является шумом. Чтобы получить качественную фотографию, сигнал должен побороть помехи на определенном уровне. Это явление и носит название «сигнал-шум».
Чтобы фотография получилась четкой и не имела нежелательных шумов, нужно правильно настроить фильтры, чтобы они не пропустили эти помехи.
Если увеличивать уровень чувствительности матрицы, действие фильтра будет ослабевать, чтобы поймать слабый сигнал. Но одновременно с этим на снимке отразятся и шумы. Поэтому, чтобы не нужно было усиливать чувствительность, необходимо правильно настроить выдержку.
Что нужно сделать, чтобы ослабить помехи?
Чтобы уровень шума был минимальным, необходимо настраивать минимальную чувствительность матрицы. Однако эта возможность напрямую зависит от того, позволяет ли это выдержка камеры.
Если же требуется уменьшать выдержку, то одновременно с этим необходимо увеличивать чувствительность, что в свою очередь приведет к увеличению уровня шума. Определенное значение приведет к тому, что шумы станут видны на снимке. Потому при съемке выбор стоит между уменьшенной чувствительностью и уменьшенным временем выдержки.
Все это говорит в пользу выбора камеры с большим размером матрицы, позволяющего снижать уровень шума и уменьшать выдержку, чтобы снимать объекты в движении без ущерба качеству изображения.
Разрешение матрицы
Этот параметр для многих является очень важным при выборе камеры. Так ли это? Попробуем разобраться.
Размер пикселя является очень важным параметром, и вот почему это так: когда пиксель больше по размеру, он способен «поймать» больше света. Матрица подобного типа будет давать меньшее количество шумов.
Если матрица имеет большее разрешение, то размер пикселей, которые ее составляют, меньше, а это стимулирует нагрев и поднимает уровень шумов.
Отличительные черты размера пикселя:
- Уровень шумов. Как уже было сказано выше, меньший размер пикселя предполагает высокий уровень шумов.
- Уровень шевеления. Чем меньше размер пикселя, тем выше его чувствительность к дрожанию и смещению камеры.
- Высокие требования к объективу камеры. Чем меньше размер пикселя, тем более высокая разрешающая способность объектива потребуется для качественных снимков.
- Чем больше разрешение фотоаппарата, тем большие возможности должен иметь компьютер, который будет обрабатывать снимки. Если вы хотите получить от съемки отличный результат, но не занимаетесь фотографированием в RAW, то вам предстоит довольно продолжительная и непростая работа в фоторедакторах на компьютере. А при редактировании снимков в очень высоком разрешении, например, составляющем 24 мегапикселя и выше это и вовсе может стать очень сложной задачей.
Динамический диапазон матрицы
Он устанавливает максимальный диапазон яркости фотографии. Каждый из пикселей, составляющих матрицу, имеет свой уровень яркости. Функцией динамического диапазона является идентификация широты яркого участка снимка, который способен охватить фотоаппарат без ущерба качеству наиболее темных и наиболее ярких частей кадра.
Динамический диапазон является статичной характеристикой матрицы. Его невозможно изменить. Правда, есть возможность сделать его более узким, если повысить чувствительность ISO, но это далеко не всегда сможет решить проблему. Строго говоря, это даже нежелательно.
Когда фотоаппарат не справляется с трудными условиями съемки, например, если снимать нужно против солнца, мы получаем на фотографии слишком сильные контрасты, которые действительно режут глаз. При взгляде на такие фотографии даже непрофессионал вынесет кадру строжайший вердикт и, конечно, будет совершенно прав.
При таких результатах съемки говорят, что динамический диапазон матрицы не справляется с условиями, в которых ведется съемка. Обычно для исправления этих недостатков нужно менять компоновку кадра, прибегать к разного рода профессиональным хитростям, которые сгладят досадные несовершенства, словом, делать все то, что с динамическим диапазоном фотоаппарата совершенно не связано, поскольку, как мы уже упомянули выше, менять его показатели невозможно, поскольку они статичны.
Поделиться статьёй:
Что такое матрица в фотоаппарате и её основные параметры
Матрица фотокамеры служит для преобразования попадающего на нее с объектива светового потока в электрические сигналы, которые затем камера и преобразует в снимок. Делается это при помощи фотодатчиков, расположенных на матрице в большом количестве.
Что такое матрица фотоаппарата — это микросхема, состоящая из фотодатчиков, которые реагируют на свет.
Структура самой матрицы является дискретной, то есть состоящей из миллионов элементов (фотоэлементов), преобразующих свет.
Поэтому в характеристиках фотоаппарата как раз и указывается количество элементов матрицы, которое мы знаем как мегапиксели (Мп). 1 Мп = 1 миллиону элементов.
Именно от самой матрицы и зависит количество мегапикселей фотоаппарата, которое может принимать значение от 0.3 (для дешевых телефонных фотоаппаратов) до 10 и больше мегапикселей у современных фотоаппаратов. Например, 0,3 Мп это в переводе уже 300 тысяч фотоэлементов на поверхности матрицы.
Характеристиками матрицы можно считать такие параметры:- Физический размер
- Разрешение (мегапиксели)
- Светочувствительность
- Отношение сигнал-шум
Внешний вид матрицы
Сама матрица фотоаппарата формирует черно белое изображение, поэтому для получения цветного изображения, элементы матрицы могут покрывать светофильтрами (красный, зеленый, синий). И если сохранять фотографию в формате JPEG и TIFF, то цвета пикселей фотоаппарат вычисляет сам, а при использовании формата RAW пиксели будут окрашены в один из трех цветов, что позволит обработать такой снимок на компьютере без потери качества.
Физический размер
Еще одной характеристикой матрицы является размер. Обычно размер указывается как дробь в дюймах. Чем больше размер, тем меньше шума будет на фотографии и больше света регистрируется, а значит, больше оттенков получится.
Размер матрицы очень важный параметр всего фотоаппарата.
Разные размеры матрицы
Чувствительность и шумы
В фототехнике применительно к матрицам используется термин «эквивалентная» чувствительность. Происходит это потому, что настоящую чувствительность измеряют различными способами в зависимости от назначения матрицы, а применяя усиление сигнала и цифровую обработку, можно сильно изменить чувствительность в больших пределах.
Светочувствительность любого фотоматериала показывает способность этого материала преобразовывать электромагнитное воздействие света в электрический сигнал. То есть, сколько нужно света, что бы получить нормальный уровень электрического сигнала на выходе.
Чувствительность матрицы (ISO) влияет на съемки в темных местах. Чем больше чувствительность можно выставить в настройках, тем лучше будет качество снимков в темноте при нужных диафрагме и выдержке. Значение ISO может быть от нескольких десятков до нескольких десятков тысяч. Недостатком большой светочувствительности может быть проявление шума на фотографии в виде зернистости. Так же чувствительность участвует в настройке экспозиции.
Размер и количество пикселей
Размер матрицы и ее разрядность в мегапикселях связаны между собой такой зависимостью: чем меньше размер, тем должно быть и меньше мегапикселей. Иначе из-за близкого размещения фотоэлементов возникает эффект дифракции и может получиться эффект замыливания на фотографиях, то есть пропадет четкость на снимке.
Еще размер матрицы и ее разрешение определяют размер пикселя и соответственно динамический диапазон, который показывает возможность фотокамеры отличить самые темные оттенки от самых светлых и передать их на снимке.
Так же чем больше размер пикселя, тем больше отношение сигнал-шум ведь больший по размерам пиксель может собрать больше света и увеличивается уровень сигнала. Поэтому при одинаковом размере матрицы меньшее количество мегапикселей может быть даже полезнее для качества фотографии.
Чем больше физический размер пикселя (англ. pixel — picture element), тем больше он сможет собрать падающего на него света и тем больше будет соотношение сигнал-шум при заданной чувствительности. Можно и по-другому сказать: при заданном соотношении сигнал-шум будет выше чувствительность. Это означает, что можно увеличивать значение чувствительности при настройке экспозиции без боязни получить шумы на фотографии. Разумеется шумы появятся, только значение ISO, при котором это произойдет, будет разным для разных фотокамер. Поэтому зеркалки со своими большими матрицами по этим показателям сильно опережают компакты.
Размер пикселя зависит от физического размера матрицы и её разрешения. Размер пикселя влияет на фотографическую широту. Дополнительно о количестве мегапикселей.
Матрица на плате
Разрешение
Разрешение матрицы зависит от количества используемых пикселей для формирования изображения. Объектив формирует поток света, а матрица разделяет его на пиксели. Но оптика объектива также имеет свое разрешение. И если разрешение объектива не достаточное, и он передает две светящиеся точки с разделением черной точкой как одну светящуюся, то точного разрешения фотоаппарата, которое зависит от значения Мп, можно и не заметить.
Поэтому результирующее разрешение фотокамеры зависит и от разрешения матрицы и от разрешения объектива, измеряемое в количестве линий на миллиметр.И максимальным это разрешение будет, когда разрешение объектива соответствует разрешению матрицы. Разрешение цифровых матриц зависит от размера пикселя, который может быть от 0,002 мм до 0,008 мм (2-8 мкм). Сегодня количество мегапикселей на фотосенсоре может дистигать значения 30 Мп.
Структура матрицы
Отношение сторон матрицы
В современных фотоаппаратах применяются матрицы с форматами 4:3, 3:2, 16:9. В любительских цифровых фотоаппаратах обычно используется формат 4:3. В зеркальных цифровых фотоаппаратах обычно применяют матрицы формата 3:2, если специально не оговорено применение формата 4:3. Формат 16:9 редко используется.
Тип матрицы
Раньше в основном использовались фотосенсоры на основе ПЗС (прибор зарядовой связи, по-английски CCD — Charge-Coupled Device). Эти матрицы состоят из светочувствительных светодиодов и используют технологию приборов с зарядовой связью (ПЗС). Успешно применяется и в наше время.
Но в 1993 году была реализована технология Activ Pixel Sensors. Её развитие привело к внедрению в 2008 году КМОП-матрицы (комплиментарный металл-оксид-полупроводник, по-английски CMOS — Complementary-symmetry/Metal-Oxide Semiconductor). При этой технологии возможна выборка отдельных пикселей, как в обычной памяти, а каждый пиксель снабжен усилителем. Так же матрицы на этой технологии могут иметь и автоматическую систему настройки времени экспонирования для каждого пикселя. Это позволяет увеличить фотографическую широту.
Фирма Panasonic создала свою матрицу Live-MOS-матрицу. Она работает на МОП технологии. Применяя такую матрицу можно получить живое изображение без перегрева и увеличения шумов.
Откуда берутся шумы на снимках и как их уменьшить.
Как можно почистить матрицу в зеркальном фотоаппарате.
Как размер матрицы влияет на качество снимков.
Матрица в фотоаппарате – что это такое? какие бывают?
Формирование изображения в фотокамере
Типы матриц
- ПЗС;
- КМОП;
- Live-MOS;
- 3 CCD.
ПЗС матрица состоит из полупроводниковых фотодиодов, а считывание электрических потенциалов осуществляется по горизонтальным строкам. Полевые структуры КМОП намного экономичнее, но за счёт электронных преобразований при считывании, качество картинки несколько хуже, чем на матрице ПЗС. Live-MOS является усовершенствованным КМОП сенсором. Его отличают повышенная чувствительность и быстрая передача сигналов. В матрице используется малошумящий усилитель и низковольтное питание. Это разработка Панасоник, которая применяется в фотоаппаратах этой компании, а так же в камерах Leica и Olympus. 3CCD или трёхматричный сенсор обеспечивает высококачественную цветопередачу с малым уровнем шумов. Разделение цветов осуществляется дихроидной призмой маленького размера с записью каждого из основных цветов на отдельную матрицу. К недостаткам системы 3CCD относятся большие размеры устройства и высокая цена камеры.
Важные характеристики матриц
Полупроводниковая матрица цифрового фотоаппарата имеет ряд основных характеристик, от которых зависит качество изображения. Это следующие параметры:
- Размер
- Количество пикселей
- Чувствительность
- Динамический диапазон
- Соотношение сигнал/шум
К дополнительным характеристикам относится напряжение питания и энергопотребление. Они не влияют на картинку и в описании фотоаппарата обычно не указываются.
Кроп фактор
Это главный параметр полупроводниковой матрицы. От него, и в меньшей степени от количества пикселей, зависят важнейшие характеристики изображения, снятого камерой. Кроп фактор это цифра, показывающая, на сколько реальная матрица меньше полнокадрового стандарта. Full Frame – это размер матрицы 24 Х 36 мм. Такими сенсорами оснащаются самые дорогие и профессиональные фотоаппараты. Этот размер соответствует кадру на стандартной фотоплёнке. Для снижения стоимости фототехники, а так же для производства компактных и лёгких любительских фотокамер «мыльниц» применяются матрицы маленького размера.
Существует общепринятый ряд форматов светочувствительных матриц. За полнокадровыми матрицами следует размер 16 Х 24 мм, что соответствует кроп-фактору 1,5. Самыми маленькими сенсорами, применяемыми в недорогих фотоаппаратах, являются матрицы с размерами 4,5 Х 3,4 мм. Это кроп фактор 7,6. Они применяются в дешёвых моделях фотокамер, где высокое качество кадра не требуется.
Разрешение, мегапиксели
Количеством мегапикселей обычно хвастаются продавцы фотоаппаратов, когда предлагают товар начинающим фотолюбителям. К этому параметру следует относиться с осторожностью. Кадр цифрового фотоаппарата состоит из миниатюрных полупроводниковых элементов. Каждый пиксель это сверхминиатюрный фотодиод или фототранзистор. Теоретически получается, что чем больше пикселей, тем выше качество изображения, точнее проработка мелких деталей или разрешение. На практике большое количество пикселей повышает качество изображения только на матрицах большого размера.
Если размер кристалла небольшой, а изготовитель фотоаппаратов сумел разместить на нём большое количество светочувствительных элементов, то качество изображения будет невысоким. Очень важным для матрицы является не только размер отдельных фотоэлементов, но и расстояние между ними.
Маленькие расстояния приводят к перегреву матрицы и возрастанию цифрового шума, который характеризуется цветными точками по всему изображению. Кроме того, при сильном диафрагмировании объектива фотокамеры, за счёт дифракции, вокруг элементов изображения будет появляться цветовая окантовка.
Поэтому кадр, снятый на фотоаппарате с матрицей 5,4 Х 4,0 мм и 16 Мп, будет гораздо хуже снимка, полученного на камере с размерами матрицы 8,8 Х 6,6 мм и 10 Мп. Считается, что, в камерах, превышение числа мегапикселей свыше 25 будет излишним.
Отчасти это связано с разрешением принтеров для фотопечати, когда самые продвинутые модели печатают фотографии с разрешением 9 600 Х 2 400 точек, что соответствует 23,4 мегапикселей.
Светочувствительность
Этот параметр в цифровых фотокамерах является относительной величиной. Кремниевая пластина со светочувствительными элементами имеет постоянную чувствительность. Всё дело в уровнях сигнала, которые поступают с фотодиодов для дальнейшего преобразования. Если на сенсор фотоаппарата поступает мало света, то электрический сигнал с него будет слабым и фотография будет тёмной. Для того чтобы сделать изображение более светлым слабый сигнал можно усилить. Изменяемый коэффициент усиления и является чувствительностью фотоаппарата. Для удобства фотографов чувствительность матрицы выражается в тех же единицах, что и у западного стандарта на фотоматериалы ASA. Соотношение чувствительности ISO и отечественных фотоплёнок выглядит следующим образом:
- 50 – 45;
- 64 – 65;
- 100 – 90;
- 160 – 130;
- 320 – 250.
В левой графе величина чувствительности фотоаппарата, а в правой чувствительность фотоплёнки по ГОСТ.
Отношение сигнал/шум
Мелкие цветные точки на изображении возникают от разных причин. Прежде всего, сама матрица даже при отсутствии засветки будет выдавать слабый электрический потенциал. Это и есть шум. Чтобы он не влиял на изображение, уровень полезного сигнала должен намного превышать уровень шума. Шумовые характеристики матрицы повышаются с уменьшением размера пикселя и расстояния между отдельными точками. Поэтому самой некачественной картинкой будет та, которая получена на маленьком сенсоре с большим количеством мегапикселей. Шум фотокамеры заметно возрастает при увеличении коэффициента усиления или чувствительности. Поэтому, если это возможно, рекомендуется снимать на минимальной чувствительности. Отрицательно влияет на качество изображения нагрев матрицы фотоаппарата. Это происходит, когда она постоянно работает, выводя изображение на дисплей. Профессионалы стараются работать с оптическим видоискателем фотокамеры. В этом случае питание на матрицу подаётся только на очень короткое время, и она не успевает нагреться.
Динамический диапазон
Этот параметр определяется промежутком между минимальным и максимальным значением экспозиции, которые отчётливо видны на снимке. Если у фотоаппарата указан динамический диапазон 8 ступеней или EV, то на снимке будут видны объекты, отличающиеся по яркости в 256 (28) раз. Все предметы, яркость которых выше, получатся совершенно белыми. Нижний порог определяется уровнем шумов самой матрицы, а верхний максимальным электрическим зарядом фотодиода.
Какой фотоаппарат выбрать
При желании снимать всё подряд, не задумываясь о высоком качестве снимка, можно приобрести любой фотоаппарат типа компакт или «мыльница». Отсутствие ручных режимов, большое количество сюжетных программ и фокусировка на лица, делает такой фотоаппарат простым в обращении и удобным для бытового использования. Для получения качественных снимков подойдёт недорогой фотоаппарат с матрицей большего размера и с возможностью ручной установки некоторых параметров съёмки. Ещё больше возможностей предоставляет пользователю беззеркальная камера «суперзум». Обладая небольшими размерами, она позволяет снимать интересные сюжеты на большом удалении от объекта съёмки, поэтому подойдёт для туристов и путешественников. Самые качественные снимки получаются с помощью зеркальной камеры, хотя её применение ограничивается большими размерами и весом. Если Вы хотите узнать все нюансы выбора фотокамеры, наши эксперты подготовили подробные инструкции в статье как выбрать фотоаппарат.
Итоги
При выборе фотоаппарата следует сначала ориентироваться на размер матрицы. Не стоит гнаться за большим количеством точек на изображении. 12-16 Мп более чем достаточно для получения и печати фотографий хорошего качества.
Цифровой зум для камеры не слишком важен, так как он только позволяет растянуть центральную часть изображения на весь экран с ухудшением качества.
Многие параметры не указываются в спецификации на фотоаппарат, поэтому перед выбором модели неплохо почитать отзывы фотолюбителей на специальных сайтах.
Источник: https://my-photocamera.ru/ustrojstvo/osnova-fotokamer-matrica-fotoapparata.html
Матрица фотоаппарата — ее устройство, характеристики, рекомендации по выбору
Матрица фотоаппарата – один из основных компонентов современной фототехники. На ее поверхности строится изображение, которое фиксируется чувствительными элементами (их называют пикселями).
Существует множество эффективных алгоритмов дальнейшей обработки сигнала, но именно матрица стоит в самом начале электронного тракта фотокамеры и в наибольшей степени влияет на качество фотоснимка.
До появления матрицы использовалась пленка. Принципиально устройство фотоаппарата с тех пор изменилось мало.
Изображение, как и раньше, строится объективами разных типов на светочувствительной поверхности, а далее посредством различных технологических процессов переносится либо на бумагу, либо на дисплей компьютера.
Но матрица имеет перед пленкой одно существенное преимущество – мгновенное получение результата. Именно это главным образом и определило повсеместное применение матриц в качестве фотосенсоров.
Устройство и типы матрицСовременная матрица — это микросхема, поверхность которой состоит из множества чувствительных к свету элементов. Каждый элемент является самостоятельным светоприемником, преобразующим падающий на него свет в электрический сигнал, который после предварительной обработки записывается на карту памяти. Изображение, которое мы видим, состоит из совокупности записанных в цифровом виде сигналов с каждого элемента, а значит, имеет дискретную структуру.
Существует две технологии преобразования света в сигнал, на которых может работать матрица фотоаппарата. Первая основана на свойстве полупроводниковых диодов накапливать электрический заряд под воздействием света, и носит название ПЗС (прибор с зарядовой связью) или CCD (то же самое по-английски).
Вторая технология также использует накопление заряда, но в качестве приемника применяется не диод, а транзистор, что позволяет организовать усиление сигнала непосредственно в самом светочувствительном элементе. Эта технология называется КМОП (расшифровка мало что скажет неспециалисту, приводить ее не буду) или CMOS по-английски.
Соответственно существуют и два типа матриц – ПЗС и КМОП.
Первая матрица работала по технологии ПЗС, поскольку эта технология проще и была внедрена первой.
Сейчас более перспективным считается принцип КМОП, поскольку предварительное усиление сигнала непосредственно в элементе матрицы позволяет повысить чувствительность, снизить шумы, сократить энергопотребление и уменьшить стоимость матрицы. Несмотря на это, ПЗС матрицы все еще продолжают использоваться и сегодня.
Элементы, из которых состоит матрица фотоаппарата, способны фиксировать только интенсивность падающего на них света.
Для того, чтобы записать цвет, необходимо, как минимум, три таких элемента (такое количество связано с особенностями восприятия цвета человеческим глазом, имеющим три вида колбочек), каждый из которых отвечает за свою область спектра.
Чтобы реализовать цветовую чувствительность, перед каждым элементом ставится светофильтр, который пропускает только вполне определенный цвет – красный, зеленый или синий (модель RGB – Red-Green-Blue – которая используется в подавляющем большинстве матриц).
Таким образом, получается, что матрица состоит из набора трех видов сенсоров, при этом располагаться они могут разными способами – четырехугольником, у некоторых матриц шестиугольником, да и количество элементов разного цвета может быть разным.
Например, в широко распространенном фильтре Байера на каждый красный и голубой элемент приходится два зеленых, при этом они еще и распределены случайным образом.
Это сделано, чтобы смоделировать повышенную цветовую чувствительность человеческого глаза к зеленому цвету.
А что же тогда такое всем известный пиксель? Это легко понять, если представить себе, что фотоаппарат работает так же, как глаз. Изображение строится зрачком (объектив), воспринимается сетчаткой с палочками и колбочками (матрица) и обрабатывается мозгом (процессор). Собственно саму картинку мы видим мозгом, ведь структура сетчатки так же дискретна, как и матрица фотоаппарата.
Так вот пиксель – это логическая структура, формирующаяся в результате обработки сигнала процессором фотоаппарата по специальным алгоритмам. Пиксель может состоять и из одного светочувствительного элемента, и из трех и более.
Например, в уже знакомом нам фильтре Байера цвет каждого элемента вычисляется по информации, полученной от окружающих его элементов, а следовательно, пиксель состоит из одного светочувствительного элемента.
У разных матриц и алгоритмов это может быть по-разному.
По большому счету, нам все сказанное не так важно. На технологическом поле бьются производители фототехники, выпуская все более совершенные матрицы и постоянно улучшая алгоритмы обработки изображений.
Что действительно нужно понимать, так это то, что для нас как пользователей, матрица состоит из пикселей, каждый из которых является элементом изображения, несущим информацию об интенсивности света и его цвете.
А алгоритм обработки мы вообще вряд ли узнаем, поскольку свои ноу-хау производители берегут как зеницу ока.
Мы рассмотрели, как устроена матрица фотоаппарата, а теперь перейдем к ее основным характеристикам, понимание смысла которых поможет вам правильно выбрать хороший фотоаппарат.
Размер матрицыСамая важная характеристика. И вот почему. Любой приемник излучения обладает шумами, т. е. на полезный сигнал всегда накладывается паразитный шум. Матрица не является исключением.
Из теории известно, что чем больше света поступает в приемник излучения, тем меньше относительное влияние шума.
Отсюда следует очевидный вывод: чем больше площадь чувствительного элемента, тем больше на него падает света, тем меньше шум.
Таким образом, чтобы матрица меньше шумела, она должна иметь больше размер и меньше пикселей. В этом случае можно будет снимать с большей чувствительностью ISO, с длинными выдержками, в темное время суток, ночью и т. д. и получать при этом фотографии высокого качества. Рассмотрим, какие размеры имеют современные матрицы.
Исторически сложилось так, что вместо того, чтобы просто указать размеры, например в миллиметрах, для обозначения размеров матриц используются малопонятные и запутанные величины типа 1/2,7”. Это длина диагонали матрицы в долях дюйма (надо же такое придумать!).
Тем не менее, такое обозначение указывается наиболее часто, и есть мнение, что это делается специально, чтобы запутать потребителя, поскольку производители не очень любят афишировать размер матрицы.
С размером тесно связано понятие кроп фактора – отношения диагонали полного кадра к диагонали матрицы, который также не вполне очевиден, но часто указывается в характеристиках фотоаппарата.
Самая большая матрица из доступных (среднеформатные мы здесь рассматривать не будем из-за их очень высокой стоимости) имеет размер полного кадра 24х36 мм (кадр малоформатной пленочной камеры). Такая матрица применяется в полнокадровых зеркалках и дорогих беззеркальных фотоаппаратах. Отличается высокой чувствительностью, малыми шумами и отличным качеством изображения.
Все остальные матрицы меньше. Самые маленькие используются в компактных любительских мыльницах, они же имеют и самые низкие характеристики. Зато и цена таких фотоаппаратов весьма доступна. Рекомендация здесь одна: покупайте фотоаппарат с большей матрицей.
Разрешение матрицыВторая важная характеристика. Отвечает за детализацию изображения. Измеряется в миллионах пикселей – мегапикселях (МПикс.). Чем больше разрешение, тем большего формата фотографию можно напечатать и больше увеличить изображение на мониторе. Иными словами, тем большее количество информации несет цифровой снимок.
К сожалению, эта характеристика сильно пострадала в маркетинговых войнах производителей фототехники. Когда цифровая фотография только начиналась, разрешение действительно было главным параметром матрицы.
Тогда матрица фотоаппарата мыльницы имела разрешение 3 – 4 МПикс., а у профессиональных зеркалок около 6. Этого мало, поскольку с 6 МПикс.
можно напечатать фотографию размером не более А4, а ведь это профессиональная камера!
Но потом началась гонка мегапикселей, которая привела к тому, что качество изображения недорогой мыльницы с 16 МПикс. стало хуже, чем у зеркалки с 10 МПикс. Маленькая матрица 1/2,7” просто не в состоянии обеспечить приемлемый световой поток для 16 МПикс. втиснутых в 5,27х3,96 мм.
Снимок получается шумным, шумоподавляющие алгоритмы замыливают картинку, четкость падает. В общем, беда. А ведь с 16 МПикс можно было бы легко напечатать фотографию 40х30 см и даже больше (!).
Правда, в случае матрицы большего размера (например, формата APS-C размером 25,1×16,7 мм) , а не с той, о которой я говорю.
Вы сами должны решить, фотографии какого формата будете печатать или рассматривать на мониторе.
А рекомендация здесь состоит в том, что предпочтительнее выбрать матрицу с меньшим разрешением, но с большим размером, она точно будет работать лучше.
Например, для матриц упомянутого выше формата APS-C оптимальным можно считать разрешение 12 – 16 МПикс. А часто ли вы печатаете фотографии формата А3?
Светочувствительность матрицыЭта характеристика определяет возможность матрицы регистрировать слабые световые потоки, т. е. снимать в темноте или с короткими выдержками. Определяется в единицах международного стандарта ISO.
Как мы уже говорили выше, чем больше чувствительность, тем больше шумов. Матрица фотоаппарата типа КМОП шумит меньше, чем ПЗС. Большая по размерам меньше, чем маленькая. С меньшим разрешением меньше чем с большим.
Обычно фотоаппарат настроен по умолчанию на чувствительность 100 ISO. Качественные крупные матрицы на 200 ISO. Рекомендую снимать с как можно меньшей чувствительностью.
Повышение чувствительности приводит к шумам и оправданно только тогда, когда по-другому снять кадр вообще невозможно, например, ночью без штатива или быстродвижущийся объект в условиях недостаточной освещенности.
Во всех остальных случаях устанавливайте чувствительность как можно меньше.
Соотношение сигнал/шум матрицыЭтот параметр как раз и отражает шумность матрицы. Практически мы уже рассмотрели, как матрица фотоаппарата создает шумы и от чего они зависят.
Добавлю лишь то, что кроме типа, размера, чувствительности, шум зависит еще и от температуры матрицы, чем она выше, тем шум больше. А при интенсивной работе матрица нагревается.
В беззеркальных фотоаппаратах матрица работает постоянно, а в зеркалках только в момент срабатывания затвора, поэтому при прочих равных условиях матрицы даже любительских зеркальных фотоаппаратов шумят меньше.
Борьба с шумом это отдельная тема. Развитие цифровой техники идет очень быстрыми темпами и с каждым годом матрицы становятся все более совершенными. Шум можно значительно уменьшить при обработке снимков в фоторедакторах, но помните, что даже великий Photoshop не всемогущ, поэтому старайтесь придерживаться рекомендаций, которые давались выше.
На этом рассмотрение матриц можно завершить. Надеюсь, что современная матрица, пришедшая на смену пленке, не разочарует вас, поэтому снимайте, экспериментируйте и учитесь! И не экономьте на матрице, хотя эта рекомендация уже из другой области.
Источник: http://fotoapparat-expert.ru/matrica-fotoapparata-ee-ustrojstvo-xarakteristiki-rekomendacii-po-vyboru.html
Матрица фотоаппарата
При выборе фотоаппарата нужно учитывать множество нюансов, обращать внимание на каждую деталь. И далеко не последнюю роль в процессе выбора играют именно характеристики матрицы, которой оснащена камера. Что же представляет собой эта самая матрица и почему она так важна? Давайте это выясним!
Общее представление о матрице фотоаппарата
Если вы посмотрите в объектив камеры, вы легко найдете матрицу: видите блестящий прямоугольник в самом центре объектива? Да, это она и есть.
Матрица является важнейшим элементом фотокамеры, отвечающим за то, какое изображение мы получим в результате съемки.
По сути она представляет собой микросхему, которая состоит из светочувствительных элементов. Когда на нее падает свет, начинается формирование электрического сигнала определенного уровня интенсивности, который зависит от степени яркости света. При съемке она фиксирует свет, который впоследствии преобразуется в фотографию.
Кстати, количество мегапикселей, которое имеет фотокамера, также зависит именно от матрицы и может колебаться от 0.3 до 10 и более (чем дороже и качественнее фотоаппарат, тем больше мегапикселей он имеет).
Изначально матрица создает монохромное (ч.б) изображение. В цветное оно преобразуется благодаря светофильтрам, которыми покрываются ее составные части.
Особенности строения матрицы
Что касается структуры матрицы, то она является дискретной и складывается из множества частей, в совокупности преобразующих падающий на нее свет. Один фотодиод в составе создает один пиксель фотографии.
Как вы наверняка знаете, каждое цифровое изображение представляет собой что-то вроде мозаики, состоящей из множества точек, которые в совокупности и являются фотографией.
Изображение не «распадается» именно потому, что этих точек очень много и они имеют высокую плотность расположения относительно друг друга.
Вполне логично предположить, что если бы плотность их расположения была ниже, мы бы увидели, как изображение распадается на эти самые точки, и это было бы наглядной демонстрацией дискретного характера структуры матрицы.
Матрица как альтернатива пленки
В те времена, когда цифровой фототехники еще не существовало, светочувствительным элементов, выполняющим функции матрицы, была пленка. Если проанализировать устройство пленочных и цифровых фотоаппаратов, можно увидеть, что существенных отличий между ними не так уж много. Основным отличием как раз и будет схема приема и преобразования света.
Как именно происходит процесс приема света в фотокамере с пленкой? В тот момент, когда фотограф нажимает кнопку спуска, затвор открывается, в результате чего пленка принимает свет. До того, как затвор вновь закрывается, идет химическая реакция, а ее итогом является формирование фотографии.
Как вы можете заметить, процесс создания фотоснимка был совершенно иным, и в современных фотоаппаратах матрица выполняет именно функцию пленки, то есть генерирует изображение. Они выполняют совершенно одинаковые функции, разница состоит лишь в технике их выполнения и в хранилище созданного изображения, которым в первом случае выступает пленка, а во втором — карта памяти фотоаппарата.
Характеристики матрицы
Необходимо понимать, что матрицы бывают совершенно разными по качественным показателям. В этом вопросе важным сигналом будет цена: в том или ином ценовом сегменте матрицы имеют определенный уровень качества.
Будьте готовы к тому, что бюджетные варианты фотоаппарата вряд ли будут обладать высококачественной матрицей. Поскольку матрицу можно смело назвать сердцем камеры, не стоит экономить при выборе.
Вы ведь хотите, чтобы ваши снимки были на высоте? Тогда остановите свой выбор на фотоаппарате, оснащенном качественной матрицей.
По каким параметрам следует выбирать матрицу?
- Размер
- Разрешение
- Соотношение сигнал-шум
- Уровень светочувствительности
- Динамический диапазон
Итак, рассмотрим первый параметр из нашего списка, а именно — размер матрицы. Его определяет величина пикселей, а также плотность их расположения относительно друг друга. Меньшая плотность расположения пикселей дает меньший уровень нагрева матрицы и более сильное соотношение сигнала и шума, которое создает более четкую фотографию.
Учтите, что именно размер матрицы является ее главной характеристикой. При выборе на него нужно обратить особое внимание.
Что же обеспечивает размер матрицы и почему он является таким важным параметром?
Итак, размер матрицы диктует:
- Уровень шума фотографии
- Глубину и насыщенность ее цвета
- Динамический диапазон
- Размер фотокамеры
Больший размер матрицы обеспечивает:
- Низкие показатели шума на фотографии. Матрица, имеющая большую поверхность, принимает больше света. Это будет сопряжено с меньшим нагревом, меньшей погрешностью в процессе квантования, соответственно, меньшим уровнем воздействия нежелательных шумов. Чем больше физический размер матрицы, тем меньше посторонних шумов будет на снимке, даже если съемка осуществляется при низком уровне освещения. Если говорить проще, фотография не будет пестрить лишними точками, точно не способствующими эстетике снимка.
- Широкий динамический диапазон
- Насыщенные, глубокие цвета снимка
Глубина цвета является показателем, который определяет возможность камеры идентифицировать любые метаморфозы цвета, даже самые незначительные. Это особенно ценно для фотографий однотонных пейзажей, не имеющих резких цветовых переходов. Большая матрица способна уловить даже самый незначительный цветовой переход, в то время как маленькая не имеет такой возможности.
Единственный недостаток, с которым придется смириться при выборе большой матрицы, это размер самой камеры. Чем больше матрица, тем больше размер камеры. Строго говоря, это вряд ли можно считать серьезным недостатком, учитывая широкий спектр преимуществ, которые дает матрица большого размера.
Виды матрицы
Он определяет способ работы матрицы.
На этом основании матрицы делят на 2 технологии:
Конечная цель является одинаковой: накопление света. Разница в том, что является элементом, составляющим структуру. В первой технологии это диод, а во второй — транзистор.
Если говорить о качестве фотографий, то плюсом CCD-технологии были более приятные глазу цвета, а CMOS-технология выгодно отличалась гораздо меньшим уровнем шума.
В наше время подавляющее большинство камер оснащено матрицей CMOS.
Чувствительность матрицы
Она является очень важным параметром. Чем большую чувствительность установить, тем больше возможность зафиксировать на фотографии плохо освещенные объекты. Но при таких условиях будут также увеличиваться нежелательные шумы.
Параметр IS0 является эквивалентным показателем чувствительности. 50 — самый низкий показатель чувствительности, при котором чистое фото не подвергается разрушению шумом.
Сигнал-шум
Это параметр, который находится в непосредственной связи с чувствительностью. Он определяет уровень света и шумов на снимке.
Нужно помнить, что любое фото имеет определенный показатель шума. Светочувствительность характеризуется тем же. Она не может иметь статичных показателей. Они будут меняться, и эти изменения зависят от условий съемки.
Даже если свет совсем отсутствует, фотодатчик все равно продемонстрирует в итоге определенное значение. Как раз это и является шумом. Чтобы получить качественную фотографию, сигнал должен побороть помехи на определенном уровне. Это явление и носит название «сигнал-шум».
Чтобы фотография получилась четкой и не имела нежелательных шумов, нужно правильно настроить фильтры, чтобы они не пропустили эти помехи.
Если увеличивать уровень чувствительности матрицы, действие фильтра будет ослабевать, чтобы поймать слабый сигнал. Но одновременно с этим на снимке отразятся и шумы. Поэтому, чтобы не нужно было усиливать чувствительность, необходимо правильно настроить выдержку.
Что нужно сделать, чтобы ослабить помехи?
Чтобы уровень шума был минимальным, необходимо настраивать минимальную чувствительность матрицы. Однако эта возможность напрямую зависит от того, позволяет ли это выдержка камеры.
Если же требуется уменьшать выдержку, то одновременно с этим необходимо увеличивать чувствительность, что в свою очередь приведет к увеличению уровня шума. Определенное значение приведет к тому, что шумы станут видны на снимке. Потому при съемке выбор стоит между уменьшенной чувствительностью и уменьшенным временем выдержки.
Все это говорит в пользу выбора камеры с большим размером матрицы, позволяющего снижать уровень шума и уменьшать выдержку, чтобы снимать объекты в движении без ущерба качеству изображения.
Разрешение матрицы
Этот параметр для многих является очень важным при выборе камеры. Так ли это? Попробуем разобраться.
Размер пикселя является очень важным параметром, и вот почему это так: когда пиксель больше по размеру, он способен «поймать» больше света. Матрица подобного типа будет давать меньшее количество шумов.
Если матрица имеет большее разрешение, то размер пикселей, которые ее составляют, меньше, а это стимулирует нагрев и поднимает уровень шумов.
Отличительные черты размера пикселя:
- Уровень шумов. Как уже было сказано выше, меньший размер пикселя предполагает высокий уровень шумов.
- Уровень шевеления. Чем меньше размер пикселя, тем выше его чувствительность к дрожанию и смещению камеры.
- Высокие требования к объективу камеры. Чем меньше размер пикселя, тем более высокая разрешающая способность объектива потребуется для качественных снимков.
- Чем больше разрешение фотоаппарата, тем большие возможности должен иметь компьютер, который будет обрабатывать снимки. Если вы хотите получить от съемки отличный результат, но не занимаетесь фотографированием в RAW, то вам предстоит довольно продолжительная и непростая работа в фоторедакторах на компьютере. А при редактировании снимков в очень высоком разрешении, например, составляющем 24 мегапикселя и выше это и вовсе может стать очень сложной задачей.
Динамический диапазон матрицы
Он устанавливает максимальный диапазон яркости фотографии. Каждый из пикселей, составляющих матрицу, имеет свой уровень яркости. Функцией динамического диапазона является идентификация широты яркого участка снимка, который способен охватить фотоаппарат без ущерба качеству наиболее темных и наиболее ярких частей кадра.
Динамический диапазон является статичной характеристикой матрицы. Его невозможно изменить. Правда, есть возможность сделать его более узким, если повысить чувствительность ISO, но это далеко не всегда сможет решить проблему. Строго говоря, это даже нежелательно.
Когда фотоаппарат не справляется с трудными условиями съемки, например, если снимать нужно против солнца, мы получаем на фотографии слишком сильные контрасты, которые действительно режут глаз. При взгляде на такие фотографии даже непрофессионал вынесет кадру строжайший вердикт и, конечно, будет совершенно прав.
При таких результатах съемки говорят, что динамический диапазон матрицы не справляется с условиями, в которых ведется съемка.
Обычно для исправления этих недостатков нужно менять компоновку кадра, прибегать к разного рода профессиональным хитростям, которые сгладят досадные несовершенства, словом, делать все то, что с динамическим диапазоном фотоаппарата совершенно не связано, поскольку, как мы уже упомянули выше, менять его показатели невозможно, поскольку они статичны.
Источник: http://top100photo.ru/blog/azbuka-fotografii/matrica-fotoapparata
Матрица фотоаппарата
Матрица фотокамеры служит для преобразования попадающего на нее с объектива светового потока в электрические сигналы, которые затем камера и преобразует в снимок. Делается это при помощи фотодатчиков, расположенных на матрице в большом количестве.
Что такое матрица фотоаппарата — это микросхема, состоящая из фотодатчиков, которые реагируют на свет.
Структура самой матрицы является дискретной, то есть состоящей из миллионов элементов (фотоэлементов), преобразующих свет.
Поэтому в характеристиках фотоаппарата как раз и указывается количество элементов матрицы, которое мы знаем как мегапиксели (Мп). 1 Мп = 1 миллиону элементов.
Именно от самой матрицы и зависит количество мегапикселей фотоаппарата, которое может принимать значение от 0.3 (для дешевых телефонных фотоаппаратов) до 10 и больше мегапикселей у современных фотоаппаратов. Например, 0,3 Мп это в переводе уже 300 тысяч фотоэлементов на поверхности матрицы.
Характеристиками матрицы можно считать такие параметры:
- Физический размер
- Разрешение (мегапиксели)
- Светочувствительность
- Отношение сигнал-шум
Внешний вид матрицы
Сама матрица фотоаппарата формирует черно белое изображение, поэтому для получения цветного изображения, элементы матрицы могут покрывать светофильтрами (красный, зеленый, синий).
И если сохранять фотографию в формате JPEG и TIFF, то цвета пикселей фотоаппарат вычисляет сам, а при использовании формата RAW пиксели будут окрашены в один из трех цветов, что позволит обработать такой снимок на компьютере без потери качества.
Физический размер
Еще одной характеристикой матрицы является размер. Обычно размер указывается как дробь в дюймах. Чем больше размер, тем меньше шума будет на фотографии и больше света регистрируется, а значит, больше оттенков получится.
Размер матрицы очень важный параметр всего фотоаппарата.
Разные размеры матрицы
В фототехнике применительно к матрицам используется термин «эквивалентная» чувствительность. Происходит это потому, что настоящую чувствительность измеряют различными способами в зависимости от назначения матрицы, а применяя усиление сигнала и цифровую обработку, можно сильно изменить чувствительность в больших пределах.
Светочувствительность любого фотоматериала показывает способность этого материала преобразовывать электромагнитное воздействие света в электрический сигнал. То есть, сколько нужно света, что бы получить нормальный уровень электрического сигнала на выходе.
Чувствительность матрицы (ISO) влияет на съемки в темных местах. Чем больше чувствительность можно выставить в настройках, тем лучше будет качество снимков в темноте при нужных диафрагме и выдержке.
Значение ISO может быть от нескольких десятков до нескольких десятков тысяч. Недостатком большой светочувствительности может быть проявление шума на фотографии в виде зернистости.
Так же чувствительность участвует в настройке экспозиции.
Размер и количество пикселей
Размер матрицы и ее разрядность в мегапикселях связаны между собой такой зависимостью: чем меньше размер, тем должно быть и меньше мегапикселей. Иначе из-за близкого размещения фотоэлементов возникает эффект дифракции и может получиться эффект замыливания на фотографиях, то есть пропадет четкость на снимке.
Еще размер матрицы и ее разрешение определяют размер пикселя и соответственно динамический диапазон, который показывает возможность фотокамеры отличить самые темные оттенки от самых светлых и передать их на снимке.
Так же чем больше размер пикселя, тем больше отношение сигнал-шум ведь больший по размерам пиксель может собрать больше света и увеличивается уровень сигнала. Поэтому при одинаковом размере матрицы меньшее количество мегапикселей может быть даже полезнее для качества фотографии.
Чем больше физический размер пикселя (англ. pixel — picture element), тем больше он сможет собрать падающего на него света и тем больше будет соотношение сигнал-шум при заданной чувствительности. Можно и по-другому сказать: при заданном соотношении сигнал-шум будет выше чувствительность.
Это означает, что можно увеличивать значение чувствительности при настройке экспозиции без боязни получить шумы на фотографии. Разумеется шумы появятся, только значение ISO, при котором это произойдет, будет разным для разных фотокамер.
Поэтому зеркалки со своими большими матрицами по этим показателям сильно опережают компакты.
Размер пикселя зависит от физического размера матрицы и её разрешения. Размер пикселя влияет на фотографическую широту. Дополнительно о количестве мегапикселей.
Матрица на плате
Разрешение
Разрешение матрицы зависит от количества используемых пикселей для формирования изображения. Объектив формирует поток света, а матрица разделяет его на пиксели. Но оптика объектива также имеет свое разрешение.
И если разрешение объектива не достаточное, и он передает две светящиеся точки с разделением черной точкой как одну светящуюся, то точного разрешения фотоаппарата, которое зависит от значения Мп, можно и не заметить.
Поэтому результирующее разрешение фотокамеры зависит и от разрешения матрицы и от разрешения объектива, измеряемое в количестве линий на миллиметр.
И максимальным это разрешение будет, когда разрешение объектива соответствует разрешению матрицы. Разрешение цифровых матриц зависит от размера пикселя, который может быть от 0,002 мм до 0,008 мм (2-8 мкм). Сегодня количество мегапикселей на фотосенсоре может дистигать значения 30 Мп.
Структура матрицы
Отношение сторон матрицы
В современных фотоаппаратах применяются матрицы с форматами 4:3, 3:2, 16:9. В любительских цифровых фотоаппаратах обычно используется формат 4:3. В зеркальных цифровых фотоаппаратах обычно применяют матрицы формата 3:2, если специально не оговорено применение формата 4:3. Формат 16:9 редко используется.
Тип матрицы
Раньше в основном использовались фотосенсоры на основе ПЗС (прибор зарядовой связи, по-английски CCD — Charge-Coupled Device). Эти матрицы состоят из светочувствительных светодиодов и используют технологию приборов с зарядовой связью (ПЗС). Успешно применяется и в наше время.
Но в 1993 году была реализована технология Activ Pixel Sensors. Её развитие привело к внедрению в 2008 году КМОП-матрицы (комплиментарный металл-оксид-полупроводник, по-английски CMOS — Complementary-symmetry/Metal-Oxide Semiconductor).
При этой технологии возможна выборка отдельных пикселей, как в обычной памяти, а каждый пиксель снабжен усилителем. Так же матрицы на этой технологии могут иметь и автоматическую систему настройки времени экспонирования для каждого пикселя.
Это позволяет увеличить фотографическую широту.
Фирма Panasonic создала свою матрицу Live-MOS-матрицу. Она работает на МОП технологии. Применяя такую матрицу можно получить живое изображение без перегрева и увеличения шумов.
Источник: https://vybrat-tekhniku.ru/ustroystvo/matrica.html
Матрица фотоаппарата
Никого сейчас не удивишь цифровой фото камерой, каждая из которых наделена матрицей фотоаппарата. Что такое матрица фотоаппарата, почему ее название матрица цифрового фотоаппарата, какие ее функции.
Почти два столетия прошло с тех пор, как был создан первый прототип фотоаппарата. Принцип работы фотокамеры остался прежним: попадание светового потока через объектив и фиксация на светочувствительном элементе. Ранее использовались пленочные элементы с свойственной им химической реакцией. Новая эра фотоаппаратов преподнесла нам цифровые фотокамеры.
Матрица фотоаппарата, а точнее матрица цифрового фотоаппарата — это электронная схема, состоящая из миллионов крошечных светочувствительных диодов, которые реагируют на световой поток, попадающий на них. Один такой светодиод матрицы цифрового фотоаппарата приносит вашему изображению ровно один пиксель.
Теперь представьте себе матрицу фотоаппарата, передающую 12 миллионов пикселей. Сложно? Вовсе нет: 12 мегапикселей — это площадь матрицы в пикселях. К примеру, если соотношение сторон матрицы 3:4, то на матрице цифрового фотоаппарата будет располагаться 3 тысячи пикселей в столбце и таких столбцов 4 тысячи.
Как выглядит матрица фотоаппарата. Какой физический размер матрицы фотоаппарата?
Особенность электроники матрицы цифрового фотоаппарата заключается в накоплении эклектического заряда в зависимости от количества попадающего света на матрицу фотоаппарата.
Если происходит переизбыток энергии на пикселе или группе пикселей матрицы цифрового фотоаппарата, то эта энергия начинает переходить на соседние пиксели.
В результате, когда фотографируете солнце вы получаете световой пучок разной окружности.
Важно знать: чем качественнее и дороже матрица, а главное, чем больше физический размер матрицы цифрового фотоаппарата, тем больше расстояние между её пикселями, тем менее заметен эффект распределения энергии на соседние пиксели.
Количество пикселей на матрице должно увеличиваться с увеличением качества иили размера матрицы цифрового фотоаппарата. Иначе, новые пиксели теряют свою эффективность. Размер матрицы цифрового фотоаппарата — важная характеристика!
Для начала, что это такое. Раньше, в эпоху пленочных фотоаппаратов с этим было просто — вместо матрицы была светочувствительная пленка-негатив. Стандарт был 35мм (физический размер 24×36 мм).
В современном же цифровом фотоаппарате вместо пленки устанавливается светочувствительная матрица — интегральная микросхема, состоящая из светочувствительных элементов (фотодиодов). Матрица предназначена для преобразования спроецированного на нее оптического изображения в поток цифровых данных.
Фотоматрица оцифровывает («нарезает» на пиксели) то изображение, которое формируется объективом фотоаппарата.
Существуют несколько типов матриц, применяемых в цифровых камерах, основные из которых CCD и CMOS. CCD-матрица обеспечивает лучшие показатели при съемке динамичных и мелких объектов, у нее низкий уровень шума и высокий коэффициент заполнения. CMOS-матрица же используется в изделиях, для которых критична конечная стоимость, благодаря своей недорогой стоимости, низкого энергопотребления.
Итак, физический размер матрицы. Необходимо отметить, что физический размер матрицы — одна из важнейших характеристик фотоаппарата, влияющих на качество получаемых фотографий. Физический размер — это ее геометрический размер (длина и ширина в миллиметрах).
Однако чаще всего размеры фотосенсоров чаще всего обозначают в виде дробных частей дюйма, например 1 / 2.5″. Так как эта величина обратная, то и соответственно, размер матрицы больше, если число после дроби меньше.
Для примера, приведем соотношение наиболее часто используемых матриц:
| Диагональ матрицы | Геометрический размер |
| 1 / 3.2″ | 3.4 х 4.5мм |
| 1 / 2.7″ | 4.0 х 5.4мм |
| 1 / 2.5″ | 4.3 х 5.8мм |
| 1 / 2.3″ | 4.6 х 6.2мм |
| 1 / 1.8″ | 5.3 х 7.2мм |
| 2 / 3″ | 6.6×8.8мм |
| 1″ | 9.6 х 12.8мм |
| APS-C (матрица, в 1.6 раза меньше APS) | 15 х 23мм |
| полный формат (APS) | 24 х 36мм |
Проще ориентироваться не на размер матрицы в обратных значениях дюйма, а на кроп-фактор. Кроп-фактор — это коэффициент, показывающий во сколько раз матрица фотоаппарата меньше полного формата. Например, для наиболее распространенного размера матрицы современных мыльниц 1 / 2.3″ кроп-фактор составит 5.62, т.е. матрица в 5.62 раза меньше полноформатной.
Размер матрицы влияет на количество цифрового шума, передаваемого вместе с основным сигналом на матрицу. Наличие цифрового шума, в свою очередь, придает фотографии неестественный вид и создается впечатление, что на фотографии наложена матовая пленка.
Чем больше физический размер матрицы, тем больше ее площадь и тем больше света на нее попадает, в результате чего полезный сигнал матрицы будет сильнее и соотношение сигнал / шум будет лучше.
Это позволяет получать более яркую, качественную картинку с естественными цветами.
Источник: http://nikon3100.ru/statii/matrica-fotoapparata
Какой размер матрицы фотоаппарата лучше: таблица размеров
Влияние размера матрицы фотоаппарата на качество съемки
Матрица цифрового фотоаппарата — это тот узел фотокамеры, в котором непосредственно формируется изображение. Матрица представляет микросхему с пикселями. При попадании фотона на пиксель образуется сигнал, тем больший, чем большее кол-во фотонов света попадает. Возникающие электрические сигналы обрабатываются процессором камеры и архивируются на карту памяти.
Как выбрать матрицу фотоаппарата и что такое разрешение матрицы фотоаппарата?
От количества пикселей зависит разрешение изображения и уровень шумов. Чем больше количество пикселей на матрице, тем лучше детализация.
На матрице находятся 2592 точки по ширине, 1944 точки по высоте. При перемножении этих величин получается примерно 5 млн пикселей. Такая камера имеет 5 мПа.
Обратите внимание
Пиксели преобразуют свет в ч/б изображение, чтобы картинка получилась цветной используются цветные фильтры. Каждый фильтр фильтрует лучи своего цвета, строя изображение при помощи процессора. Процессор рассчитывает цвет пикселя с учетом полной информации соседних ячеек.
Матрицы, покрытые фильтрами, цвет пропускают хуже, из-за этого изображение получается размытым. Процессор исправляет автоматически или ручной корректировкой четкость изображения, контрастность, яркость, снижает количество шумов на фото.
Типы матриц
Кроме количества пикселей большое значение имеет тип матрицы. Какой лучше тип матрицы фотоаппарата? Здесь каждый выбирает сам.
- ПЗС-матрицы (CCD) — устройства со светочувствительными фотодиодами. ПЗС-матрица выпускается большинством ведущих производителей фототехники.
- КМОП-матрицы (CMOS) отличаются малым энергопотреблением. Матрицы этой технологии могут иметь систему автонастройки времени экспонирования для отдельного пикселя, что позволяет увеличить фотошироту.
- Live-MOS матрицы разрабатывались компанией Panasonic, а в фотоаппаратах впервые появилась у фирмы Olympus. В наше время эту матрицу с возможностью визирования по экрану применяют все крупные производители. Благодаря ей можно получить живое изображение без увеличения шумов.
Есть и другие виды матриц: DX-матрица, матрица Nikon RGB и пр.
ПЗС матрицы собирают картинку в аналоговой версии, а затем оцифровывают. CMOS матрицы оцифровывают каждый пиксель по отдельности. На данный момент на этих матрицах выпускаются больше 90% фотоаппаратов. Технология CMOS дала возможность снимать видео и оснастить этой функцией современные фотоаппараты.
Какая лучше
Очень важный параметр при рассмотрении матрицы — это размер матрицы фотоаппарата в сантиметрах или дюймах. Грубо говоря, физический размер матрицы фотоаппарата — это величина диагонали прямоугольника матрицы (эти характеристики можно найти в инструкции). Большой пиксель матрицы имеет более сильную чувствительность к свету.
Чем меньше пиксель, тем меньше фотонов света он уловит. При равном кол-ве матриц более качественно, с меньшим кол-вом шумов будет снимать камера с большей по размеру матрицей, а значит, большим размером пикселя. Чем больше размер матрицы цифрового фотоаппарата, тем чище от шумов будет съемка в условиях недостаточной освещенности.
При одинаковой пиксельности, площадь каждого пикселя более крупной матрицы естественно больше, а значит светочувствительность и цветопередача у Full Frame матрицы куда лучше.
Это не все характеристики матрицы фотоаппарата. Чувствительность матрицы ISO влияет на качество съемки в темное время суток или при плохой освещенности.
Чем больше ISO можно поставить в настройках, тем лучше получится качество снимков в темноте.
При большой чувствительности может проявиться шум в виде зернистости.
Сравнение размеров матриц
Какой размер матрицы фотоаппарата лучше? Размер матрицы — это параметр аналогичный размеру негатива в пленочном фотоаппарате. Full Frame лучшая матрица имеет размеры близкие к стандартному кадру 35мм негатива. Кадр на пленке имеет размеры 24 на 36мм.
Большинство цифровых компактных фотоаппаратов до 7 мПа имеют матрицу меньшего размера 7,2 на 3,5мм, а больше 7мм — еще более меньшую матрицу 4 на 5мм.
Таким образом, площадь матрицы компактной камеры в 25 р. меньше площади пленочного кадра. Матрица зеркального аппарата более продвинутого уровня, меньше площади кадра в полтора-два раза.
Топовые зеркальные камеры отличаются Full Frame матрицей.
Важно
Какая матрица лучше для фотоаппарата? Размер матрицы может варьироваться от 1/3.2″ (4.0 * 5.
4мм, такие устройства устанавливаются в недорогих бюджетных аппаратах) до 4 / 3″ (18 * 13,5мм , — дорогостоящие цифровые камеры). Есть DX, APS-Cформат (24 * 18 мм для зеркалок).
Самые крупные полнокадровые (36 * 24 мм), среднеформатные (60 * 45 мм) матрицы устанавливаются на более дорогие профессиональные камеры.
Кроп-фактор — соотношение матриц
Кроп-фактор – есть ни что иное как соотношение величины кадра пленки 35mm к величине интегральной микросхемы из светочувствительных элементов фотоаппарата (Kf = диагональ 35мм≈43,3мм / диагональ микросхемы).
Пользуясь кроп-фактором, доступно знать равнозначную видимую дистанцию объектива на своей камере и соотносить объективы другой цифровой фототехники с зеркалами. Этот демонстратор, указывающий на различие меж величинами матрицы в цифровой фотокамере у вас и классическим кадром на пленке при формате 35mm.
Такой фактор важен прежде всего для вычисления расстояния фокуса объектива, когда его нужно установить на различные камеры, и в действительности это очень важно.
Если термин и представляется сложным, в реальности это совершенно не так тяжело.
Ибо кроп-фактор в фотопромысле давно занял важные позиции; обязательно требуется правильное понимание, как возможно пользовать его для сравнения качества работы объективов настолько, чтоб не заострять внимание непосредственно на фотокамере.
Подобные показатели помогут исключить всевозможные разногласия и сумятицу. Освоив понятие кроп-фактора, вам станет доступно производить точный подбор требующихся объективов, совершая покупку и пользуясь цифровой зеркальной фототехникой.
Матрица и глубина резкости
Еще один параметр напрямую зависит от матрицы. Чем больше размер, тем меньше глубина резкости. Именно поэтому компактной камерой можно снимать до горизонта, а зеркалка вдобавок прекрасно справится с выделением объекта и макросъемкой.
Кроп-фактор — параметр соотношения диагонали кадра, который соответствует 35мм пленки и диагонали размера матрицы.
На практике, это значит, что чем меньше размер матрицы, тем больше будет глубина резкости.
Портретная съемка поэтому лучше удастся на камере с большим размером матрицы, а при маленькой матрице задний фон будет оставаться четким независимо от вашего желания.
Это важно для фотографов, которые в ряде случаев предпочитают размытый фон, например, при съемке портретов. Чем больше КРОП фактор, тем менее вероятность получить качественную размытость.
Таким образом, покупателю самому нужно решить проблему какая должна быть матрица на его фотоаппарате. Что важнее компактность или большие размеры камеры, глубина резкости или возможность снимать размытый фон. Идеальных решений пока не разработано. А при равном количестве пикселей нужно выбирать больший размер матрицы. Чем она крупнее, чем меньше шум при недостатке света.
Источник: http://StuffOnly.net/uroki/osnovy-fotografii/teoriya/matrix.html
Размер матрицы все, что нужно знать
Раньше было вполне логичным, что покупая компактную камеру, вы получали небольшую матрицу, а если выбирали крупногабаритную зеркалку со сменными объективами, матрица на ней была значительно больше. Это сказывалось на качестве фотографий, поскольку чем больше матрица, тем более детализированы были изображения.
Сейчас это в принципе, тоже в какой-то мере актуально, матрица — это самая дорогая часть камеры в плане производства, и чем больше матрица, тем и камера, соответственно, дороже. Потому на дорогие камеры обычно не устанавливаются матрицы 1/2.3 дюймовые, а на дешевых, соответственно, не найти полнокадровую.
Но надо сказать, что сейчас многие производители стали предлагать компактные камеры с относительно большими матрицами, точно так же как и камеры под сменные объективы с меньшими матрицами. Так что разобраться в ситуации, пожалуй, стало сложнее. Небольшие матрицы способны отлично срабатывать в различных условиях, и даже имеют некоторые преимущества перед большими.
Совет
За последние годы и сама технология создания матриц значительно продвинулась вперед, так что сегодня большое количество предлагаемых вариантов может смутить даже опытного пользователя, что уж говорить о тех, кто приобретает первую фотокамеру. А ведь размер матрицы еще и на фокусном расстоянии сказывается, так что учитывать при выборе камеры действительно нужно очень многое.
Итак, мы решили разобраться в различных типах матриц, чтобы расставить все по местам. Но для начала нужно уточнить, как именно размер матрицы влияет на эффективное фокусное расстояние.
Фокусное расстояние
Итак, мы уже выяснили, что размер матрицы связан с фокусным расстоянием, то есть с тем, какой именно объектив подойдет вашей камере.
Если вы приобретаете компактный девайс с не съемным объективом, проблема сама собой отпадает, то есть с позиции покупателя это гораздо проще. Но не просто так профессионалы выбирают именно те камеры, где объективы можно менять.
Любой объектив должен иметь поле (круг) изображения или диаметр света, который существует в объективе и который покрывает размер матрицы. Есть одно исключение, к которому мы вернемся позже.
Итак, встроенные или нет, объективы всегда помечены реальным фокусным расстоянием, а не эффективным фокусным расстоянием, которое вы получите при использовании на той или иной камере.
Но проблема в том, что различные объективы с различной маркировкой могут в итоге обеспечить одно и то же фокусное расстояние для работы. Почему? Потому что они предназначены для разных матриц.
Именно поэтому производители помимо маркировки указывают эквивалент, где основным расстоянием считается 35мм или полнокадровая матрица.
Вот — один из примеров: камера с матрицей меньше чем полнокадровая вполне может использоваться с 18-55мм объективом, но на деле фокусное расстояние, которое вы получите будет ближе к 27-82мм.
Обратите внимание
Это все происходит потому, что матрица не достаточно велика, чтобы использовать объектив точно так же как смог бы полнокадровый.
Из-за того, что периферическое пространство внутри объектива не принимается в расчет, получается тот же эффект как от использования объектива с большим фокусным расстоянием.
В компактных камерах может был установлен 19мм объектив, но из-за размера матрицы, который меньше фуллфрейма, вы получите в итоге большее фокусное расстояние, около 28мм. Точная длина определяется кроп-фактором, то есть числом, на которое нужно увеличить данное под фуллфрейм фокусное расстояние, чтобы выяснить какое расстояние получится на той или иной камере.
Размеры матриц
1/2.3 дюйма
Размер такой матрицы примерно 6.3 x 4.7 мм. Это — самая маленькая матрица, которую можно найти в современных камерах, и чаще всего — в бюджетных компактных моделях. Разрешение такой матрицы составляет, как правило, 16-20 Мп.
По крайней мере такой расклад был самым популярным какое-то время назад. Сегодня многие производители стали делать больший упор на любительские фотоаппараты с большими матрицами, так что и размер такой не так распространен как ранее.
Однако, преимущество в том, что такой размер позволяет получить компактную камеру и использовать ее с длиннофокусными объективами, например компактными суперзумами. А большая матрица значит, что и объектив понадобится больший.
При хорошем освещении такие камеры могут предоставить неплохой результат, но для более придирчивых фотографов они точно не подойдут, поскольку при низкой освещенности будут зернить.
1/1.7 дюймов
Размер этих матриц 7.6 x 5.7мм. С такой матрицей гораздо проще выделить объект съемки из фона, и соответственно, производительность в плане деталей как в тени, так и на свету.
Так что использовать их можно уже в более разнообразных условиях.
Раньше такие камеры были самыми распространенными среди любителей, но сейчас их место стремительно занимают дюймовые матрицы, о которых речь и пойдет дальше.
А вот 1/1.7 дюймовые матрицы используются в некоторых относительно устаревших камерах Q-серии Pentax.
Дюймовые матрицы
Размер дюймовой матрицы 13.2мм x 8.8мм. Сегодня такие матрицы очень популярны на различных типах камер, размер позволяет им оставаться легкими и компактными.
Логично, что самый популярный способ применения для дюймовой матрицы — это карманные любительские камеры, на которых объектив будет лимитирован 24-70мм или 24-100мм (если брать эквивалент 35мм).
Однако, на некоторых суперзум камерах он тоже используется?, примеры — это Sony RX10 III и Panasonic FZ2000.
Важно
Гораздо лучше дюймовая матрица нам знакома по камерам Nikon серии 1, например Nikon 1 J5 — отличной и легкой камере, которая способна делать отличные фото и снимать 4К видео. Такую матрицу можно встретить даже среди смартфонов — Panasonic CM1.
Камеры с дюймовой матрицей способны показать результаты, значительно отличные от предыдущих вариантов. Качество их будет высоким, а даже компактные камеры, как правило, имеют широкую максимальную апертуру, так что на матрицу попадает достаточно света, потому и фотографии выходят четкими и резкими.
Частично, это результат технологии, а не только размера матрицы. Матрицы современного производства могут более эффективно захватывать свет.
Микро 4/3
Матрица микро 4/3 имеет физический размер 17.3 x 13мм. Этот формат используется в компактных зеркалках и беззеркалках Olympus и Panasonic. Они ненамного больше по размеру, чем дюймовые матрицы, но меньше чем APS-C, речь о которых пойдет ниже.
По сути, микро 4/3 — это четверть размера полнокадровой матрицы, так что считать для нее активное фокусное расстояние предельно просто: достаточно умножить фокусное расстояние на 2.
Иными словами, 17мм объектив на камере с матрицей микро 4/3 обеспечит фокусное расстояние такое же, как 34мм объектив на полнокадровой матрице. По аналогии, 12-35мм даст 24-70мм и так далее.
На камере Lumix DMC-LX100 используется матрица микро 4/3 разрешением 12.8 Мп. Это — одна из компактных цифровых камер, которые обладают большим количеством функций и небольшим размером. Камера оснащена объективом Leica с фокусным расстоянием 24-75мм.
APS-C
Средний физический размер такой матрицы 23.5 x 15.6мм. Такая матрица используется на зеркальных камерах для начинающих и любительских камерах, а сейчас и на многих беззеркалках. Матрица APS-C обеспечивает отличный баланс между качеством изображения, размером и вариативностью в плане совместимости с различными объективами.
Не все APS-C матрицы одинаковы по размеру, ведь это зависит от производителя тоже. Например, матрицы APS-C на камерах Canon физически немного меньше чем те, что установлены в Nikon и Sony, таким образом ее кроп-фактор равен 1.6x, а не 1.5x.
Совет
В любом случае, APS-C — это всегда отличный вариант и профессиональные фотографы нередко предпочитают его для съемок природы и спортивных мероприятий, потому что благодаря кроп-фактору появляется возможность “приблизиться” к объекту съемки имеющимся объективом.
APS-C доступны на некоторых компактных камерах, например Fujifilm X100F, это обеспечивает высокое качество для фотографий на портативных камерах, особенно в комплекте с объективами с постоянным фокусным расстоянием. 23мм объектив на Fujifilm X100F, имеет широкую максимальную апертуру, потому с помощью этой камеры можно без труда добиться узкой глубины резкости.
APS-H
Размер матриц APS-H как правило равен 26.6 x 17.9мм. Сегодня этот формат практически не встречается, и ассоциируется только с устаревшими моделями Canon EOS-1D (EOS-1D Mark III и Mark IV). Сейчас, правда, в этой серии используются фуллфреймы.
Поскольку APS-H больше чем APS-C, но меньше полнокадровой матрицы, кроп-фактор, соответственно равен 1.3х, потому 24мм объектив обеспечит на такой камере фокусное расстояние приблизительно 31мм.
Одна из последних фотокамер, где можно встретить такую матрицу — это Sigma sd Quattro H. Однако и Canon решили не отказываться от APS-H совсем, и предпочли применить эту матрицу для камер наблюдения, а не для зеркальных фотоаппаратов.
Фуллфрейм
36 x 24мм она же фуллфрейм, она же полнокадровая матрица и она же примерно такая же по размеру как негатив пленочной фотографии. Используются полнокадровые матрицы на любительских и профессиональных камерах и считаются самым удобным вариантом для съемок.
Размер такой матрицы позволяет ей принимать на себя больше света, вследствие чего и фото получаются выше по качеству чем с меньшими матрицами. Соответственно, и когда речь идет о количестве пикселей, выбор больше.
А разрешение полнокадровых матриц варьируется от 12 до 50Мп.
Кроп-фактор, конечно, в случае с полнокадровой матрицей значения не имеет, так как маркировка объектива будет соответствовать активному фокусному расстоянию.
Однако же, некоторые объективы, созданные под APS-C матрицы все равно можно использовать с фуллфреймами, но разрешение будет ограничено (камера обрежет углы, чтобы избежать виньетирования).
Но проверять совместимость, разумеется, нужно всегда, иначе есть риск повредить зеркало.
Средняя (медиум) матрица
44мм x 33мм – размер такой матрицы. Это, очевидно, больше фуллфрейма и с момента появления такие матрицы вызвали оживленный интерес и дискуссии. Они использованы в камерах Fujifilm GFX 50S, Hasselblad X1D и Pentax 645Z, последняя немного старше остальных. Применяются они в основном, исключительно профессиональными фотографами в силу цены таких камер и их специфики.
Не факт, что на этом развитие матриц как таковых остановится, но пока что это — все доступные на рынке типы матриц, а какая подойдет для ваших фото интересов, решать только вам.
Источник: https://www.fotosklad.ru/expert/photo/article/razmer-matritsy-vse-chto-nuzhno-znat.html
Матрица цифрового фотоаппарата: типы, размер, разрешение, светочувствительность, чистка
Ни один фотоаппарат не может обойтись без матрицы. Современные модели оснащаются ей практически поголовно. Так произошло в момент, когда цифровые аналоги начали вытеснять устаревшие пленочные технологии.
Матрица фотоаппарата является одним из основных компонентов, без которых невозможна эксплуатация всего прибора в целом, ведь его роль если и не является ключевой, то, по крайней мере, может считаться одной из ведущих. Именно матрица отвечает за качество будущего снимка, цветопередачу, четкость, полноту кадра.
Как и другие важные элементы фототехники, матрица обладает рядом основных параметров, на которые обычно принято ориентироваться при выборе той или иной модели.
Типы матриц
Матрица цифрового фотоаппарата – это, в первую очередь, микросхема. Она преобразует световые лучи, которые, преломившись в системе линз и зеркал, попадают на нее.
В результате такого преображения получается электрический сигнал, который выводится в цифровом виде, образуя снимок. За весь этот процесс отвечают специальные фотодатчики, расположенные на самой плате.
Чем больше количество датчиков, чувствительных к свету, тем больше разрешение, и, как следствие, качество конечного снимка.
Встречаются матрицы следующих типов.
- ПЗС – тип матрицы фотоаппарата, который дословно расшифровывается как прибор зарядовой связи. В английском варианте – Charge-Coupled Device. Весьма известная аббревиатура, которая, впрочем, не так часто встречается в наши дни. Многие используют приборы, в основе которых лежат светодиоды, имеющие высокую светочувствительность, созданные на основе ПЗС системы, но, несмотря на широкую распространенность, данный вид микросхем все больше вытесняется более современным.
- КМОП-матрица. Формат матрицы, введенный в эксплуатацию в 2008 году. Впрочем, история создания данного формата уходит корнями в далекий 93-й, когда впервые была опробована технология APS. КМОП-матрица – это комплиментарный металл-оксид-полупроводник. Данная технология позволяет производить выборку отдельного пикселя почти так же, как и в стандартной системе памяти, к тому же, каждый пиксель оснащается дополнительным усилителем. Поскольку данная система является более современной, она зачастую оснащается автоматической подстройкой времени экспонирования каждого пикселя по отдельности. Данное улучшение позволяет получить полный кадр без потери боковых границ, а так же без потери верха и низа кадра. Полноразмерная матрица чаще всего бывает выполнена по технологии КМОП.
- Существует еще один тип матрицы – Live-MOS-матрица. Ее выпустила фирма «Панасоник». Данная микросхема функционирует при помощи технологии, в основе которых лежит МОП. МОП-матрица позволяет делать качественные профессиональные снимки без высокого уровня шума, а также исключает перегрев.
Физический размер матрицы
Размер матрицы фотоаппарата – одна из ее важнейших характеристик. Как правило, его указывают в дюймах в виде дроби. Больший размер подразумевает меньшее количество шумов на конечном снимке. К тому же, чем больше физический размер, тем больше световых лучей способна зарегистрировать матрица. Объем и количество лучей напрямую влияют на качество передачи оттенков и полутонов.
Кроп-фактор — это соотношение размеров кадра пленочного фотоаппарата 35 мм к размерам матрицы цифрового фотоаппарата. Все дело в том, что процесс создания цифровой матрицы довольно дорогостоящий, и поэтому производители постарались максимально сократить ее размер.
Чаще всего кроп-фактор используют для замера наиболее точного расстояния фокуса у объектива, устанавливая его на различные приборы. Здесь вступает в игру такое понятие, как эквивалентное фокусное расстояние (ЭФР), которое вычисляется путем умножения фокусного расстояния (ФР) на кроп-фактор.
Так, объектив с полнокадровой матрицей (кроп=1) и объективом с ФР 50 мм зафиксирует такое же по размерам изображение, как и кропнутая матрица 1,6 с объективом с ФР 30 мм. В этом случае можно сказать, что ЭФР у этих объективов одинаковое.
Ниже приведена таблица, в которой можно провести сравнение, как меняется ЭФР в зависимости от кроп-фактора.
Количество мегапикселей и разрешение матрицы
Матрица сама по себе является дискретной. Она состоит более чем из миллиона элементов, которые и преобразовывают световой поток, идущий от линз. В характеристике каждой модели фотоаппарата можно отыскать такой параметр матричной платы как количество светочувствительных элементов или разрешение матрицы, измеряемое в мегапикселях.
Правда, здесь есть и обратная зависимость. Если физический размер матрицы меньше, то и количество мегапикселей должно быть пропорционально меньше, в противном случае не удастся избежать эффекта дифракции: фотографии будут замыленными, без четкости.
Чем больше размер пикселя, тем больше он способен зафиксировать лучей, падающих на него. Размер пикселей напрямую связан с размерами матрицы, и влияет, в основном, на широту кадра.
Обратите внимание
Чем больше количество мегапикселей с правильным соотношением размеров матрицы, тем больше лучей света смогу уловить датчики.
Количество зафиксированных лучей напрямую влияет на исходные параметры преобразуемого материала: резкость, цветность, объем, контрастность, фокус.
Таким образом, разрешение фотокамеры влияет на качество снимка. Зависимость разрешения от объема использующихся пикселей очевидна. В объективе при помощи сложной расстановки оптических элементов формируется необходимый световой поток, который потом матрица поделит на пиксели.
Оптические приборы тоже обладают собственным разрешением. Более того, если разрешение объектива достаточно мало, а передача двух светящихся точек, разделяемых одной темной, происходит как единого целого, то разрешение будет не столь отчетливо выделяться.
Происходит это именно из-за прямой зависимости и привязки к числу мегапикселей.
Если говорить о разрешении современных цифровых микросхем, то оно складывается из размера пикселя (от 2 до 8 мкм). На сегодняшний день на рынке представлены модели с показателями до 30 мп.
Светочувствительность
В фотоаппаратах по отношению к матрице принято использовать термин эквивалентной чувствительности. Связано это с тем, что подлинную чувствительность можно измерять различными способами в зависимости от множества параметров матрицы. Зато, применив усиление сигнала и цифровую обработку, пользователь может обнаружить высокие пределы чувствительности.
Параметры светочувствительности демонстрируют возможность исходного материала преобразовываться из электромагнитных воздействий потока света в электрический двоичный сигнал. Проще говоря, показывать, сколько требуется света для получения объективного уровня электрического импульса на выходе.
Параметр чувствительности (ISO) чаще всего используется фотографами для демонстрации возможности съемки в условиях плохого освещения.
Увеличение чувствительности в параметрах прибора позволяет улучшить качество конечного снимка при необходимом значении диафрагмы и выдержки. ISO может достигать значения от нескольких десятков до тысяч и десятков тысяч единиц.
Негативной стороной высоких значений светочувствительности является появление «шумов», которые проявляются в виде эффекта зернистости кадра.
Как проводить чистку матрицы в домашних условиях
Битые пиксели не всегда могут быть таковыми на самом деле. В действительности, когда происходит смена объектива, на матрицу могут попасть частицы мусора, вызывающие эффект «битого пикселя». Чистка матрицы фотоаппарата нужна для профилактики этого эффекта, а также для более комфортной работы с прибором.
Со временем, в особенности, если устройство эксплуатируется подолгу в различных погодных условиях, матрица может покрыться слоем пыли.
При нарушении герметичности в области крепления объектива на поверхность может попасть небольшое количество влаги, что тоже может негативно сказаться на качестве кадра.
Важно
Чистку можно доверить профессионалам из сервисного центра, а можно провести и самостоятельно, в домашних условиях.
Первый и самый простой способ очистки стеклянной поверхности кремниевой пластины микросхемы – сдувание пыли.
Для этого следует использовать самую обычную грушу для чистки объективов, она продается в любом крупном магазине бытовой техники. К сожалению, использование груши помогает только при снятии легкого налета небольших песчинок пыли.
Для более крупных частиц, которые могли прилипнуть к поверхности, может потребоваться что-то более основательное.
Если груша не помогла справиться с пятнами на матрице, можно попробовать использовать специальный набор для очистки стеклянной поверхности. Стоит он несколько дороже, но эффективность очистки значительно выше.
- Первый пункт в очистке – использование специального пылесоса. Его сборка не занимает много времени и детально описана в инструкции к набору. На конце устройства находится мягкий наконечник, так что повреждение прибора во время работы исключено. Лучше всего будет прочистить при помощи пылесоса не только стеклянную поверхность, но и все скрытые полости, доступные для чистки.
- После уборки при помощи пылесоса можно начинать влажную уборку. Она осуществляется при помощи специальных щеточек, одна из которых влажная, другая сухая. Этот вид уборки нужен для пылинок, которые, будучи мокрыми, попали на поверхность стекла, и, высохнув, прикрепились к нему, создав эффект «битого пикселя». Влажная щетка пропитана специальным раствором, который эффективно удаляет засохшие песчинки и пылинки, не оставляя пятен и разводов. Необходимо проводить по стеклу плавными аккуратными движениями, лишь слегка нажимая на саму щетку. Оставшаяся влага довольно быстро испарится сама. Даже если после влажной уборки на стекле остается пара капель, то они прекрасно удаляются сухой щеточкой (кисточкой).
- Третий этап – финальный, проводим сухой щеточкой по матрице и убеждаемся, что она чистая.
После очистки можно попробовать сделать тестовый снимок, чтобы убедиться, что процедура прошла успешно. Для этого необходимо закрыть диафрагму до максимального значения и сделать снимок чистого белого листа, приведя объектив в состояние полной расфокусировки. Затем сравнить качество снимков до и после.
Почистить матрицу зеркального фотоаппарата довольно просто, для этого не требуется каких-то глубоких знаний или большого опыта, достаточно желания, немного терпения и знания базовых принципов очистки высокоточной оптической техники.
Заключение
Матрица фотоаппарата является важнейшей деталью любой современной зеркалки. Без нее невозможно сделать снимок, а от ее параметров зависит дальнейшее использование устройства. Если параметры матрицы выбраны неправильно, фотоаппарат не будет оптимально справляться со своими задачами. Матрица не требует какого-то дополнительного ухода, кроме периодической чистки стеклянной поверхности.
Источник: http://Tehnika.expert/cifrovaya/fotoapparat/matrica.html
Какая матрица для фотоаппарата лучше
В 1981 году компания Sony представила миру первый цифровой фотоаппарат. Изобретатели создали цифровой заменитель плёнки — матрицу. Этот прорыв дал возможность делать тысячи снимков и сохранять их в цифровом виде. Качество изображения стало зависеть не только от оптики, но и от размеров и свойств матрицы.
1
Что же это за свойства? Сначала вспомним, как формируется изображение. Матрица фотоаппарата — это решетка с плотной структурой. Она состоит из крошечных светочувствительных элементов — фотодиодов. Свет, собранный объективом, попадает на матрицу. Фотодиоды преобразуют этот свет в электрический заряд. Далее заряд поступает в процессор.
Он «читает» поступившие заряды и преобразует их в цифровой язык. После этого создается пиксель. Он хранит в себе информацию о яркости и цветовом оттенке, в виде цифр и битов. Каждый пиксель повторяя расположение фотодиода помещается на изображение. Миллионы крошечных пикселей формируют снимок, который записывается на карту памяти.
Матрица — это воспринимающая часть фотоаппарата.
Когда на неё попадают фотоны света, она преобразует их в электричество.
2
Теперь рассмотрим, какие параметры матрицы влияют на качество картинки:
- физический размер;
- размер фотодиода.
Два этих параметра влияют на:
- светочувствительность;
- резкость;
- разрешение;
- динамический диапазон цветов.
3
Стандартный размер 35-миллиметровой пленки был взят за основу при создании матрицы. Лучшие камеры обладают 35 мм (24х36 мм) матрицей. Такой размер позволяет захватить максимально много пространства в кадр. Большая матрица имеет ряд преимуществ. Но производство таких сенсоров относительно дорогое. Чтобы сделать технику доступнее, размеры матрицы начали уменьшать.
В любительской зеркальной камере она уменьшена в 1,5 раза – от размера 36х24 мм до размера 15,7х23,6 мм. «Уменьшение в 1,5 раза» называют кроп-фактором. В «мыльницах» матрица уменьшена в 5 раз от 35 мм. Чем меньше размер матрицы — тем меньше пространства она сможет захватить.
При одинаковом месте съемки маленькая матрица обрежет кадр.
Очень частое заблуждение, что меняется фокусное расстояние.
4
У каждой матрицы есть чувствительность. Она зависит от размера фотодиода. Чем больше фотодиод, тем больше «полезного» света он воспринимает. В последствии камера с большим фотодиодом позволяет:
- Фотографировать на больших ISO без цифрового шума.
- Использовать более короткую выдержку, чтобы получить резкое изображение.
5
В матрице с большими пикселями более широкий динамический диапазон цветов. Но нельзя увеличивать размер фотодиода на маленькой матрице. Если это сделать, то уменьшится количество мегапикселей (разрешение).
Посмотрите на характеристики двух камер. Canon 1Ds Mark II – полнокадровая, но из-за большого размера пикселя имеет максимальное разрешение, как и Nikon D7000/5100.
6
Так происходит, потому что разрешение определяется количеством пикселей на дюйм (ppi или dpi). Чем меньше размер фотодиода — тем больше пикселей поместится в одном дюйме. Один миллион пикселей называют мегапикселем. Но их значимость сильно переоценивают маркетологи. Большое разрешение вам понадобится только при распечатке больших изображений.
Для того чтобы распечатать фотографию 10х15 см, хватит 2 мегапикселя. Для наглядности возьмите любое изображение с большим разрешением. В графическом редакторе уменьшите его на 50%. Сравните два изображения. Они выглядят совершенно одинаково. Вы заметите потерю детализации, только если увеличить масштаб.
Для примера использовался фотоаппарат Nikon D5100.
Отталкиваясь от вышесказанного, можно сделать вывод: физический размер матрицы и её свойства – и есть показатель качества. Для макросъемки важнее детализация изображения и количество пикселей. Для съемок в плохом освещении подойдет более светочувствительная матрица.
Для любительской съемки могут подойти качественные «цифровики» с маленькой матрицей. Снимайте тем, что у вас есть. Ведь для того чтобы получить хорошую фотографию, не нужна дорогая техника.
Какой бы большой ни была ваша матрица, она не обеспечит глубокий смысл снимка или завораживающий пейзаж.
Источник: https://sovetclub.ru/kakaya-matrica-dlya-fotoapparata-luchshe
Фото в нашей жизни
Размеры матриц цифровых фотоаппаратовВ технической характеристике цифрового фотоаппарата размер матрицы может указываться в нескольких единицах измерений: в мегапикселях или пикселях, в частях дюйма, а также физический размер матрицы в миллиметрах (длина и ширина).
Размер матрицы цифрового фотоаппарата в мегапикселях или пикселях несет наименее объективную информацию о качестве матрицы. В этом случае мы знаем количество пикселей. Но, не зная физического размера фотодиода, трудно судить о качестве матрицы.
Размер диагонали матрицы цифрового фотоаппарата более достоверно, но не очень наглядно. Сравнивая диагонали, мы можем только судить, какая матрица больше. Но важную роль играет отношение сторон матрицы. А этой информации мы в данном случае не получим.
Размер матрицы цифрового фотоаппарата, выраженный в миллиметрах несет наиболее достоверную и полную информацию.
Нужно сказать, что все матрицы сравниваются с размером кадра 35мм фотопленки для пленочного фотоаппарата.
Размер кадра фотопленки составляет 36 * 24 мм. Этот размер на сегодняшний день является стандартом. Соответственно, чем ближе размеры матриц цифровых фотоаппаратов приближается к размеру кадра пленочного фотоаппарата, тем лучше матрица.
Ниже приводится таблица наиболее «ходовых» размеров матриц фотоаппаратов.
Таблица размеров матриц цифровых фотоаппаратов
| Диагональ вдюймах | Размер матрицы в мм | Кроп – фактор |
| 1/3.2″ | 4,5 * 3,4 | 7.9 |
| 1/2.7″ | 5,3 * 3,96 | 6.7 |
| 1/2.0″ | 6,4 * 4,8 | 5.6 |
| 1/1.8″ | 7,2 * 5,3 | 4.8 |
| 2/ 3″ | 8,8 * 6,6 | 4.0 |
| 1/1″ | 12,8 * 9,6 | 2.7 |
| 4/3″ | 18,1 * 13,3 | 2.0 |
| APS-C | 22,7 * 13,825,1 * 16,7 | 1.4 – 1.74 |
| Кадр 35мм пленки | 36 * 24 | 1 |
Из талицы размеров матриц цифровых фотоаппаратов видно, что ближе всех к полноразмерной матрице подходит матрица формата APS-C.
Матрицы формата APS-C применяются в основном на зеркальных фотоаппаратах.
В последней графе таблицы размеров матриц цифровых фотоаппаратов указан Кроп-фактор. Это коэффициент, характеризующий отношение линейных размеров кадра 35мм фотопленки к соответствующим размерам матрицы цифрового фотоаппарата. И чем он меньше, тем ближе к фотоаппарату с полноразмерной матрице.
Для добавления комментариев вам необходимо зарегистрироваться на сайте.
Источник: http://foto-kan.ru/matritsa-fotoapparata/razmery-matrits-tsifrovykh-fotoapparatov.html
Какая матрица для фотоаппарата лучше: как выбрать
Покупая фотоаппарат, неважно какой: профессионального класса или рядовой бюджетный компакт для съемок друзей и семьи на природе, хочется, чтобы снимки получались качественными, а сам аппарат давал как можно больше свободы.
Зная, какая матрица для фотоаппарата лучше, можно не впадать в ступор в магазине при виде двух моделей разных марок, которые выглядят одинаково, но стоят очень по-разному.
Все дело в сенсоре, который и отвечает за то, какое изображение будет получаться и насколько гибкие рамки пользования фотоаппаратом будут у владельца.
Совет
Матрицы цифровых фотоаппаратов делятся на два основных типа по применяемым полупроводникам и технологии считывания информации.
- Тип матрицы ПЗС (CCD) — самый распространенный. Это достаточно дешевая технология, информация об изображении считывается последовательно с каждой ячейки.
- КМОП матрицы CMOS дороже, но эффективнее в плане скорости работы, поскольку позволяют считывать данные сразу со всех светочувствительных элементов. Такие сенсоры устанавливаются в дорогих камерах, поскольку ни один производитель не пройдет мимо шанса предоставить пользователю возможности съемки с очень малыми выдержками, что в свою очередь усложняет аппаратно-программный комплекс.
Большинство фотоаппаратов пользовательского класса оснащено ПЗС матрицами.
При этом ставится вполне ожидаемое условие: для получения действительно качественных снимков при естественном освещении (или при недостаточном) лучше использовать штатив, поскольку время выдержки будет значительным. Аналогично — не получится делать снимки крайне быстро, поскольку нужно время на получение и обработку изображения.
Некоторые производители решают последнюю проблему достаточно просто: оснащают фотоаппараты буфером памяти. Туда помещаются кадры до обработки, когда ведется съемка в так называемом спортивном режиме — серией за короткий промежуток времени.
Дорогие фотокамеры, оснащенные КМОП матрицами, позволяют делать снимки «с рук» с малой выдержкой, имеют высокую светочувствительность и низкий уровень шума. С помощью такого оборудования можно проводить экспонометрию, снижается время автофокусировки, естественно, легко сделать хороший кадр.
Еще одна технология, которая применяется в самой дорогой фототехнике — многослойные матрицы. Это не очередной пункт в списке «виды матриц». Светочувствительная зона таких аппаратов состоит из трех слоев ПЗС, каждый из которых считывает только один цвет. В результате качество изображения просто потрясает. Техника с данной технологией особо маркируется: 3CCD.
Последнее, что стоит упомянуть, – технологические размеры матриц. ПЗС сенсоры можно сделать маленькими, они построены на кремниевых элементах. А КМОП матрицы достаточно большие, что является еще одним рациональным доводом в пользу их применения в дорогой профессиональной технике.
Количественный показатель качества
Задавая себе вопрос, какая матрица фотоаппарата лучше,- можно достаточно быстро получить ответ без необходимости вникать в технологические особенности. Обратите внимание на следующие характеристики:
- заявленное количество мегапикселей в характеристике камеры;
- эффективное количество пикселей, которое ответственные производители указывают в документации к фотоаппарату;
- возможные размеры изображений, которые можно делать с помощью камеры.
Производители дешевых моделей фотоаппаратов часто лукавят, указывая, прежде всего, размерность картинки и выставляя огромные цифры как эффективный рекламный ход.
Это не говорит о качестве получаемых снимков. Типы матриц фотоаппаратов могут быть разного класса.
Однако если сенсор не имеет достаточной разрешающей способности, большие изображения на выходе будут иметь низкую детализацию и высокий уровень шума.
Еще больше о качестве камеры скажет соотношение между заявленными мегапикселями матрицы и количеством эффективных точек. Это напрямую говорит о применяемой оптике. Если аппаратная часть выполнена ответственно, заявленное и эффективное количество пикселей будет почти одинаково, что не только положительно характеризует продажную цену, но и напрямую отвечает за качество снимков.
Светочувствительность и шумы
Светочувствительность матрицы — еще одна характеристика, которая описывает фотоаппарат. Покупать камеру стоит, ориентируясь на планируемые возможности применения.
Сегодня в документации в графе светочувствительности можно встретить очень высокие цифры — до 51000 и больше. Однако это не говорит напрямую о возможности делать качественные снимки.
Нет и рекомендаций, какой должна быть светочувствительность. Работает все следующим образом:
- для получения хорошего изображения требуется обеспечить выдержку, время которой зависит от уровня освещенности и светочувствительности матрицы;
- при среднем и низком освещении приходится применять штатив;
- если хочется продолжать снимать «с рук», можно программно поменять уровень светочувствительности матрицы в настройках фотоаппарата.
Однако высокая светочувствительность при малой установленной выдержке — это прямой путь к появлению шумов на снимке. Повышенная зернистость, появление мозаики — это те черты, которые раздражают и требуют тщательной вторичной обработки изображения.
Уровень светочувствительности является определяющим только при четком осознании того, в каких именно условиях будет использоваться камера. К примеру, при работе со штативом можно покупать фотоаппарат с высоким показателем, это даст широкие возможности съемки при самых разных освещениях без применения вспышки.
Физическая геометрия сенсора
Физический размер матрицы фотоаппарата в миллиметрах — еще один фактор, который не только напрямую отвечает за качество снимков, но и очень сильно формирует цену камеры.
У самых лучших моделей соотношение размерности, которое основано на стандартном формате пленки 35 мм, близко к единице.
Обратите внимание
Чем дешевле модель, тем выше показатель «кроп», обрезки, который сигнализирует о том, что матрица меньше по габаритам.
Чем меньше площадь сенсора, тем ниже охват визуального пространства перед объективом и:
- ниже общее количество света, которое падает на матрицу, следовательно, приходится повышать светочувствительность и увеличивать цифровой шум;
- больше теряется малых деталей, появляется размытие, это вызывают малые размеры, до которых преобразуется кадр.
Высокие значения кропа в фотоаппарате также означают, что разница в освещенности объектов в поле зрения фотоаппарата будет сглаживаться, что очень негативно сказывается на снимках, полученных в вечернее время без вспышки, например.
Коэффициент размерности указывается в документации к камере. Неважно, ориентируетесь ли на бюджетную или профессиональную модель — лучше будет купить аппарат с большой в геометрическом смысле матрицей.
Заключение
Невозможно сказать, какая матрица лучше. Выбирать фотоаппарат следует исходя из режимов, в которых он будет использоваться. Невозможно провести и всесторонне сравнение матриц фотоаппаратов – каждая проиграет в каком-то случае.
Правильно предсказанные условия съемок позволят камерам даже с относительно посредственными матрицами делать очень хорошие снимки. Главный фактор, который нужно учитывать обязательно — геометрические размеры матрицы. Тем, кто хочет получать действительно большие изображения в пикселях, также нужно обратить внимание на количество эффективных мегапикселей фотоаппарата.
Источник: https://TehnoPanorama.ru/fotoapparaty/matritsa-fotoapparata-kakaya-luchshe.html
Матрица фотоаппарата – какая лучше?
Каждый, кто планирует заниматься фотосъемкой, ответственно подходит к выбору самого устройства. И это правильно. В первую очередь каждый любитель и профессионал обращает внимание на качество матрица.
Ее размер — это очень важный параметр, но сперва стоит познакомиться с самим устройством, что представляет из себя матрица фотоаппарат.
Какая лучше? — с этим мы и разберемся в этой статье, а для этого нужно удариться в изучение всех ее характеристик.
к содержанию ↑
Матрица. Что она из себя представляет?
Матрица — это поверхность, на которую попадает свет и создает электрические импульсы. Это явление обрабатывается процессором, после чего информация записывается в виде цифровых значений. Другими словами, фотодатчик оцифровывает лучи света, которые в дальнейшем мы можем пронаблюдать в виде сделанной фотографии.
к содержанию ↑
Разрешение
Фотодатчик представляет из себя множество датчиков пикселей. Количество этих пикселей характеризует разрешение оцифрованного изображения. Детализация обусловлена числом этих пикселей. Теперь вы понимаете, от чего именно зависит четкость изображения. Для DSLR-камер это количество называется мегапикселями.
Современные технологии имеют до 30 миллионов пикселей. Размер матрицы обратно пропорционально влияет на глубину резкоти фотоснимка. Также этот параметр влияет и на размеры пикселя, только уже прямо пропорционально. Не трудно сделать вывод, что от размеров зависит и светочувствительность, и цветопередача.
Размер матрицы фотоаппарата, какой лучше выбрать? Давайте сперва разберемся с его предназначением.
к содержанию ↑
Физический размер матрицы
Именно этот параметр играет одну из самых главных ролей в работе фотоаппарата. Очевидно, что речь идет про геометрические размеры. Ширина и длина сенсорного датчика измеряется в миллиметрах, а в некоторых камерах может быть переведена в дюймы.
От этого размера зависит и цифровой шум, который возникает при переносе основного сигнала на передатчик фотокамеры. От площади зависит и то, сколько света попадет на сенсор.
В последнее время принято брать во внимание и коэффициент “crop factor”, который показывает отношение сенсора и полного кадра.
Светочувствительность
Светочувствительностью называется свойство пленок или матриц, которые выполнены из материала, чувствительного к свету. Этот параметр характеризует скорость “впитывания” света. По стандартам этот параметр принято обозначать как ISO.
Именно этот показатель указывает на способность усиления сигнала. Все это означает, что высокое значение ISO приведет к большему усилению сигнала, но не получится избежать усиления шумов. Поэтому большие значения — это не всегда показатель качества.
Самое оптимальное значение ISO должно быть где-то 400 единиц.
Вот мы и перешли к самому главному вопросу: какой тип матрицы лучше для фотоаппарата?.
Типы матриц фотоаппаратов
Выделяют следующие типы матриц, которые зависят от вида используемого светофильтра:
- RGB — это самый дешевый тип, имеющий самое большое распространение в фото-технике.
- RGBW. Модели с таким типом обойдутся чуть дороже, но, как известно, за качество нужно платить. RGBW удобно использовать в слабоосвещенных местах.
- RGBE. В таких матрицах установлен фильтр Баера, что положительно сказывается на цветовой гамме фотоснимка. Цвета таких фотографий наиболее максимально приближены к естественным.
Также можно классифицировать датчики по двум разным типам сенсоров:
- CCD (ПЗС). Обеспечивает последовательное считывание с ячеек информации.
- CMOS (КМОП). Считывает данные отдельно по конкретному адресу нужной ячейки.
В чем же еще их различия?
- Матрицы ПЗС требовательны по времени к “созданию” фотографии. Такие устройства невыгодно использовать для быстрой съемки.
- Если вы заинтересованы в автоматической фокусировке или экспонометрии, то CMOS типа bsi — это самый лучший вариант для приобретения.
- CCD-матрица имеет неоспоримое преимущество над CMOS — это ее малые габариты. Поликремниевый светодиод позволяет достичь меньших размеров этого элемента, но он же пагубно влияет на качество снимков в тех помещениях, которые оборудованы слабым освещением.
- В структуре CMOS-матрицы использованы полупроводники из металлооксидных материалов, которые приводят к большему размеру, но позволяют получить лучшее качество фотоснимков.
к содержанию ↑
Что же в итоге лучше?
Объективного мнения на этот счет найти невозможно, поскольку каждая технология имеет неоспоримые достоинства и недостатки. Да и все, по большей степени, зависит от сферы их применения.
к содержанию ↑
Видеоматериал
Надеемся, что, опираясь на прочитанное, вы смогли определить, какой тип матрицы лучше для фотоаппарата для вас. Удачных кадров!
Источник: https://serviceyard.net/gadgets/matritsa-fotoapparata-kakaya-luchshe.html
Матрица фотоаппарата
Никого сейчас не удивишь цифровой фото камерой, каждая из которых наделена матрицей фотоаппарата. Что такое матрица фотоаппарата, почему ее название матрица цифрового фотоаппарата, какие ее функции.
Почти два столетия прошло с тех пор, как был создан первый прототип фотоаппарата. Принцип работы фотокамеры остался прежним: попадание светового потока через объектив и фиксация на светочувствительном элементе. Ранее использовались пленочные элементы с свойственной им химической реакцией. Новая эра фотоаппаратов преподнесла нам цифровые фотокамеры.
Матрица фотоаппарата, а точнее матрица цифрового фотоаппарата — это электронная схема, состоящая из миллионов крошечных светочувствительных диодов, которые реагируют на световой поток, попадающий на них. Один такой светодиод матрицы цифрового фотоаппарата приносит вашему изображению ровно один пиксель.
Теперь представьте себе матрицу фотоаппарата, передающую 12 миллионов пикселей. Сложно? Вовсе нет: 12 мегапикселей — это площадь матрицы в пикселях. К примеру, если соотношение сторон матрицы 3:4, то на матрице цифрового фотоаппарата будет располагаться 3 тысячи пикселей в столбце и таких столбцов 4 тысячи.
Как выглядит матрица фотоаппарата. Какой физический размер матрицы фотоаппарата?
Особенность электроники матрицы цифрового фотоаппарата заключается в накоплении эклектического заряда в зависимости от количества попадающего света на матрицу фотоаппарата.
Если происходит переизбыток энергии на пикселе или группе пикселей матрицы цифрового фотоаппарата, то эта энергия начинает переходить на соседние пиксели.
В результате, когда фотографируете солнце вы получаете световой пучок разной окружности.
Важно
Важно знать: чем качественнее и дороже матрица, а главное, чем больше физический размер матрицы цифрового фотоаппарата, тем больше расстояние между её пикселями, тем менее заметен эффект распределения энергии на соседние пиксели.
Количество пикселей на матрице должно увеличиваться с увеличением качества иили размера матрицы цифрового фотоаппарата. Иначе, новые пиксели теряют свою эффективность. Размер матрицы цифрового фотоаппарата — важная характеристика!
Для начала, что это такое. Раньше, в эпоху пленочных фотоаппаратов с этим было просто — вместо матрицы была светочувствительная пленка-негатив. Стандарт был 35мм (физический размер 24×36 мм).
В современном же цифровом фотоаппарате вместо пленки устанавливается светочувствительная матрица – интегральная микросхема, состоящая из светочувствительных элементов (фотодиодов). Матрица предназначена для преобразования спроецированного на нее оптического изображения в поток цифровых данных.
Фотоматрица оцифровывает («нарезает» на пиксели) то изображение, которое формируется объективом фотоаппарата.
Существуют несколько типов матриц, применяемых в цифровых камерах, основные из которых CCD и CMOS. CCD-матрица обеспечивает лучшие показатели при съемке динамичных и мелких объектов, у нее низкий уровень шума и высокий коэффициент заполнения. CMOS-матрица же используется в изделиях, для которых критична конечная стоимость, благодаря своей недорогой стоимости, низкого энергопотребления.
Итак, физический размер матрицы. Необходимо отметить, что физический размер матрицы — одна из важнейших характеристик фотоаппарата, влияющих на качество получаемых фотографий. Физический размер — это ее геометрический размер (длина и ширина в миллиметрах).
Однако чаще всего размеры фотосенсоров чаще всего обозначают в виде дробных частей дюйма, например 1 / 2.5″. Так как эта величина обратная, то и соответственно, размер матрицы больше, если число после дроби меньше.
Для примера, приведем соотношение наиболее часто используемых матриц:
| Диагональ матрицы | Геометрический размер |
| 1 / 3.2″ | 3.4 х 4.5мм |
| 1 / 2.7″ | 4.0 х 5.4мм |
| 1 / 2.5″ | 4.3 х 5.8мм |
| 1 / 2.3″ | 4.6 х 6.2мм |
| 1 / 1.8″ | 5.3 х 7.2мм |
| 2 / 3″ | 6.6×8.8мм |
| 1″ | 9.6 х 12.8мм |
| APS-C (матрица, в 1.6 раза меньше APS) | 15 х 23мм |
| полный формат (APS) | 24 х 36мм |
Проще ориентироваться не на размер матрицы в обратных значениях дюйма, а на кроп-фактор. Кроп-фактор — это коэффициент, показывающий во сколько раз матрица фотоаппарата меньше полного формата. Например, для наиболее распространенного размера матрицы современных мыльниц 1 / 2.3″ кроп-фактор составит 5.62, т.е. матрица в 5.62 раза меньше полноформатной.
Размер матрицы влияет на количество цифрового шума, передаваемого вместе с основным сигналом на матрицу. Наличие цифрового шума, в свою очередь, придает фотографии неестественный вид и создается впечатление, что на фотографии наложена матовая пленка.
Чем больше физический размер матрицы, тем больше ее площадь и тем больше света на нее попадает, в результате чего полезный сигнал матрицы будет сильнее и соотношение сигнал / шум будет лучше.
Это позволяет получать более яркую, качественную картинку с естественными цветами.
Источник: http://nikon3100.ru/statii/matrica-fotoapparata
Влияние размера матрицы на ее характеристики
Наш читатель, Александр Хлупнов, поделился своим мнением о влиянии размера сенсора фотокамеры на ее характеристики. Спасибо, Александр, публикуем вашу статью.
Хотим мы, или нет, но фотоаппарат необходим для регистрации информации, т.е. памяти о каком либо событии. Количественной мерой информации может служить объем фотографии в Мрiх (мегапикселях). Очевидно, чем больший объем информации, тем она ценнее. Для цифровой фотографии объем информации определяется размером матрицы. Качество фотографии зависит от ряда технических характеристик матрицы, таких как глубина цвета (бит), динамический диапазон (ЕВС) и чувствительность ISO (low-light ISO). Наиболее полная характеристика матриц цифровых фотоаппаратов приведена на сайте независимой лаборатории DxOMark. Выберем для примера характеристики некоторых зеркальных фотоаппаратов фирмы Nikon, которые лучше знакомы автору статьи. Это, конечно, профессиональные полнокадровые и аппараты с «кропнутой» матрицей. Для полноты анализа в этой таблице приведены сведения и о некоторых фотоаппаратах фирмы Canon. Приведенная таблица содержит такие данные матриц фотоаппаратов, как разрешение в Мрiк, начальной цене, годе выпуска, общей оценки матрицы на сайте DxOMark, глубине цвета (бит), динамическом диапазоне (ЕВС), чувствительности в ISO (low-light ISO).
Анализ приведенных данных показывает, что у всех рассматриваемых фотоаппаратов, приблизительно, одинаковые значения глубины цвета и динамического диапазона. Фотоаппараты с полнокадровой матрицей имеют выше чувствительность в ISO. Анализ матриц современных зеркальных фотоаппаратов показывает, что у полнокадровых аппаратов при числе ячеек 46 Мрix (D850) размер ячейки составляет 4,35 мкм, что соизмеримо с ячейкой «кропнутой» матрицы 24 Мрix (D7200) – 3,92 мкм. Следовательно, учитывая эти геометрические размеры ячеек матриц, можно сделать вывод о том, что диапазон чувствительности матриц рассматриваемых фотоаппаратов во многом определяется электронным обеспечением фотоаппарата.
Для сравнения влияния размера матрицы на качество фотографии выберем зеркальные камеры с матрицами 24 Мрix, например, D750 и D7200. В этом случае качество фотографии не будет зависеть от размера матрицы, а будет определяться только техническими характеристиками как матрицы, так и фотоаппарата. Из данных таблицы 1 можно сделать вывод, что эти параметры близки.
Таблица 1. Матрицы фотоаппаратов
Модель фотокамеры | Мрiх | Цена | Дата выпуска | Оценка DxOMark | Бит | ЕВС | ISO |
Nikon D850 | 45,7 | $3300 | 08.2017 | 100 | 26,4 | 14,8 | 2660 |
Canon EOS 50 Ds | 50,6 | $3700 | 02.2015 | 87 | 24,7 | 12,4 | 2381 |
Nikon D810 | 36,3 | $3300 | 06,2014 | 97 | 25,7 | 14,8 | 2853 |
Nikon D750 | 24,3 | $2300 | 09,2014 | 93 | 24,8 | 14,5 | 2956 |
Nikon D5 | 20,8 | $6500 | 01,2016 | 88 | 25,1 | 12,3 | 2434 |
Nikon D700 | 12,1 | $2699 | 07,2008 | 80 | 23,5 | 12,2 | 2290 |
Canon EOS 6D | 20,2 | $2099 | 09,2012 | 82 | 23,2 | 11,8 | 2786 |
Nikon D7200 | 24,2 | $1200 | 03,2015 | 87 | 24,5 | 14,6 | 1333 |
Nikon 1 V1 | 10,1 | $1000 | 09,2011 | 54 | 21,3 | 11,0 | 346 |
Nikon D3400 | 24,2 | $650 | 08,2016 | 86 | 24,8 | 13,9 | 1192 |
Nikon D500 | 20,9 | $2000 | 01,2016 | 84 | 24,1 | 14,0 | 1324 |
Canon EOS 80D | 24,2 | $1200 | 02,2016 | 79 | 23,6 | 13,3 | 1135 |
Дальнейшее сравнение требует рассмотрение системы «матрица + объектив». Для корректного анализа возьмем характеристики объективов фирмы Nikon (Nikkor), приведенные на сайте DxOMark. При выборе объективов необходимо учитывать, что для сохранения неизменным объема регистрируемой информации требуется соблюдать угол обзора объектива, т.е. для аппаратов Nikon с «кропнутой» матрицей, фокусное расстояние объективов должно быть в 1,5 раза меньше, чем у полнокадровой матрицы. Обычно штатный объектив для аппарата с полнокадровой матрицей 50 мм, а эвивалентный ему штатный объектив для аппарата с «кропнутой» матрицей уже 35 мм. Если использовать зумы, то для полнокадровых матриц применяются штатные объективы 24-70 мм, 24-85 мм, 24-120 мм, а соответствующие им для «кропнутой» матрице 18-55 мм, 16-80 мм, 16-85 мм. Конечно, есть и другие объективы, но для примера выберем ниболее доступные и менее дорогие. Для характеристики объектива приводится общая оценка сайта, начальная цена, год выпуска, резкость в Мрiх, передача Тстор, мскажения %, виньетирование ЭВ, КГИ аберрация в мкм. Наиболее важной для анализа является резкость объектива в Мрiх, т.к. этот параметр определяет объем информации, которая с помощью объектива передаётся на матрицу фотоаппарата. Остальные характеристики определяют качество передаваемой информации и при анализе могут не учитываться. Так как характеристики объективов зависят от параметров матрицы фотоаппарата, то в этой таблице указано, каким фотоаппаратом получены эти данные.
Таблица 2. Характеристики объективов
Объектив | Цена | Дата выпуска | Оценка DxOMark | Мрiх | Камера |
AF Nikkor 50mm f/1.4D | $329 | 06.1995 | 37 | 22 | D800E |
AF Nikkor 50mm f/1.4D | $329 | 06.1995 | 27 | 15 | D500 |
AF Nikkor 50mm f/1.8D | $134 | 02.2002 | 32 | 24 | D800E |
AF Nikkor 50mm f/1.8D | $134 | 02.2002 | 22 | 11 | D500 |
AF Nikkor 50mm f/1.8D | $134 | 02.2002 | 29 | 19 | D750 |
AF Nikkor 50mm f/1.8D | $134 | 02.2002 | 21 | 10 | D700 |
AF-S Nikkor 24-70mm f/2.8 G ED | $1800 | 08.2007 | 30 | 21 | D800E |
AF-S Nikkor 24-85mm f/3.5-4.5 G ED VR | $599 | 06.2012 | 24 | 17 | D800E |
AF-S DX Nikkor 35mm f/1.8 G | $195 | 03.2009 | 28 | 10 | D500 |
AF-S DX Nikkor 16-85mm f/3.5-5.6 G ED VR | $630 | 01.2008 | 19 | 8 | D500 |
AF-S DX Nikkor 18-55mm f/3.5-5.6 G VR | $185 | 11.2007 | 17 | 8 | D500 |
Nikon 1 Nikkor 18.5mm f/1.8 | $187 | 09.2012 | 13 | 6 | Nikon 1 V1 |
Сравним снимки, выполненные фотоаппаратом Nikon D750 с объективом Nikkor 50mm f/1.8D и фотоаппаратом D7200 с объективом 35mm f/1.8G. У фотоаппарата D750 разрешение снимка будет в этом случае 19 Мрiх. Для фотоаппарата D7200 с разрешением матрицы 24,3 Мрiх, разрешение объектива 35mm f/1.8 будет чуть выше, чем у D500, у которого матрица с разрешением 20.9 Мрiх, и может быть принята 11 Мрiх. В результате этого анализа получаем, что на фотоаппаратах с одинаковым разрешением матрицы 24 Мрiх при съёмке на полнокадровой и «кропнутой» матрицах одинаковой области пространства получаем снимки с разным разрешением. Для полнокадровой матрицы, т.е. D750 разрешение 19 Мрiх, а у D7200 – с «кропнутой» — 11 Мрiх.
Подобный анализ можно провести для других объективов и матриц цифровых фотоаппаратов, используя данные DxOMark.
Рассмотрим беззеркальный фотоаппарат (можно сказать квазизеркальный) Nikon 1 V1 с матрицей в 1 дюйм. Объектив 18,5 мм эквивалентен 50 мм на полный кадр (множитель 2,7). Разрешение этого объектива из таблицы 2 – 6 Мрiх, т.е. существенно меньше, чем у фотоаппарата D700 с объективом 50mm (10 Мрiх). Ещё больше разница будет, если применить штатный зум 10-30mm, у которого разрешение всего 3 Мpix.
Съемка аппаратом с «кропнутой», т.е. меньшей по размерам матрицей, приводит к существенному уменьшению объёма получаемой информации по сравнение с полнокадровой матрицей, и как следствие, к ухудшению качества снимка.
Для современных фотоаппаратов с полнокадровыми матрицами постоянно выпускаются новые объективы с увеличенным разрешением, что позволяет увеличить объем получаемой информации, т.е. качества фотографий.
Надеюсь, что приведенный анализ, базирующийся на объективных технических характеристиках, поможет однозначно решить вопрос о том, какой цифровой фотоаппарат лучше, с полнокадровой или «кропнутой» матрицей, или сделать более широкий вывод, о том, что объем информации увеличивается при росте размеров матрицы.
Чистка матрицы фотоаппаратов Nikon, Fujifilm, Canon в СПб, очистка матрицы от пыли у зеркальных фотоаппаратов
Проблема загрязнения матрицы цифровой фотокамеры – одна из самых актуальных тем для фотографов и фотолюбителей на сегодняшний день. Даже если вы редко меняете объективы и используете пыле-/влагозащищенную оптику, рано или поздно хотя бы несколько пылинок попадут на матрицу. Попадая на сенсор фотокамеры, пыль образует характерные пятна, наиболее заметные при закрытых значениях диафрагмы. Особенно четко они проявляются на светлых монотонных участках фотографий. Многие камеры при включении и/или выключении включают вибрацию всей матрицы или только переднего защитного фильтра, что отчасти помогает, но некоторые заряженные частички пыли практически «приклеиваются» за счет электростатического поля, так что стряхнуть или сдуть их с помощью груши не получается. В таких случаях становится необходимостью влажная чистка матрицы. Выполнение данной процедуры мы рекомендуем доверять только профессионалам.
До и после чистки
Как уберечь матрицу от загрязнений?
Как правило, пыль и другие мелкие частицы попадают на матрицу фотоаппарата при смене объектива, или сначала засасываются в объектив, а из него попадают уже внутрь камеры. Вероятность загрязнения существенно увеличивается в том случае, если смена объектива производится на улице, либо в помещении с мягкой мебелью, коврами, текстилем и другими подобными накопителями пыли.
Можно существенно уменьшить вероятность загрязнения матрицы, соблюдая следующие несложные правила:
- При смене объектива, держать камеру байонетом вниз.
- По возможности содержать в чистоте задние линзы объективов, всегда закрывать их крышкой.
- У объективов без внутренней фокусировки / трансфокации (с выезжающим блоком линз) не следует менять фокус / фокусное расстояние при попадании в особо пыльные условия (песчаная буря, съемка пыли из-под колес и так далее).
Как показывает практика, полностью избежать попадания пыли на матрицу невозможно. Но приемы указанные выше позволят вам существенно сократить количество пыли и, соответственно, реже прибегать к процедуре чистки матрицы.
Не рекомендуется самостоятельно заниматься влажной чисткой матрицы
Относительно безопасным способом чистки, к которому можно прибегать в домашних условиях, является обдув матрицы воздухом с помощью специальной груши. Категорически запрещено использовать баллоны со сжатым воздухом, т.к. их напор воздуха слишком силён. Если это не помогает, нужно переходить к влажной чистке. Крайне не рекомендуется самостоятельно заниматься влажной чисткой данного элемента фотоаппарата: далеко не все средства, которые рекламируются как жидкости или наборы для чистки матриц, на самом деле можно отнести к таковым. Также можно ошибиться с дозировкой средства, или же слишком сильно надавить на матрицу. Все это может привести к еще большим загрязнениям камеры (разводы от чистящих средств), попаданию чистящей жидкости под верхний фильтр, появлению царапин на просветляющем покрытии, и так далее. Царапины на поверхности матрицы остаются навсегда и становятся видны в виде одинаковых цветных полос на каждом снимке. Эта проблема решается только заменой матрицы — самого дорогого элемента фотоаппарата.
Для качественной и безопасной чистки матрицы мы советуем обращаться к профессионалам.
Услуги по чистке матрицы
FOTO-ONE Service предлагает услуги по профессиональной чистке матрицы вашей фото- или видеокамеры. Как и в любом профессиональном сервисном центре мира, при чистке матрицы в обязательном порядке делаются контрольные снимки перед чисткой, в процессе и после окончания. При желании, заказчик может посмотреть результат чистки.
Что такое чистка матрицы фотоаппарата?
Под чисткой матрицы обычно подразумевают влажную чистку многослойного фильтра перед матрицей от мельчайших пылинок и других загрязнений. Чистка матрицы рекомендуется при появлении темных точек на светлых участках изображения. Особенно хорошо их видно в виде темных точек на фоне неба. Темные точки — это не что иное, как грязь и пыль на матрице.
Пыль становится более заметна при закрытии диафрагмы. Например: на диафрагме 2.8, будут видны только существенные загрязнения, а пыль будет почти не заметна. При диафрагме 8 пыль уже заметна, а при диафрагме 16 или 22 будут заметны даже мельчайшие пылинки.
Профессиональная чистка матриц
Под профессиональной чисткой матрицы подразумевается чистка, где кроме самой матрицы, СНАЧАЛА чистится от пыли и грязи блок зеркал, все каморное пространство, в котором находится блок зеркал, а также сам затвор. Если этого не делать перед чисткой самой матрицы, то пыль уже находящаяся внутри камеры, в самое ближайшее время попадет на матрицу и труды по ее чистке окажутся напрасны. Результатом профессиональной чистки становится отсутствие видимых следов на изображении даже при диафрагме 22. Кроме матрицы, чистым остается и каморное пространство, и блок зеркал, и затвор.
Чистка матрицы с разборкой камеры
Во всех современных фотокамерах существуют системы удаления сухой пыли ультразвуком. Наличие такой системы иногда спасает от случаев загрязнения сенсора камеры сухой пылью. К сожалению, очень мало фотографов (даже профессиональных) задается вопросом: куда исчезает пыль внутри камеры после включения функции ультразвуковой чистки? Дело в том, что внутри камеры, по периметру матрицы находится специальный пылеуловитель в виде полимерной полосы с очень высокой адгезией. В какой-то момент времени этот пылеуловитель переполняется и пыль попадает обратно на сенсор. Обычная чистка, даже профессиональная, в таком случае бессильна. В этом случае необходима чистка матрицы с разборкой камеры.
Вычищается все пространство внутри камеры, затвор, каморное пространство, меняется (или чистится, в зависимости от модели камеры) пылеуловитель. После такой чистки, камера собирается, полностью настраивается и становится референсной (то есть эталонной).
Доверяйте чистку только авторизованным сервисным центрам
Неавторизованные сервисные центры не смогут корректно провести такую чистку, так как после разборки камере необходима калибровка, а для ее проведения сервисный центр должен иметь специальное оборудование и закрытое программное обеспечение, которое таким СЦ недоступно.
Получить бесплатную консультацию
Рассечение матрицы камеры, часть 2: Внешняя матрица ←
22 августа 2012 г.
Добро пожаловать в третий пост из серии «Камера перспективы — Интерактивный тур». В прошлом посте мы узнали, как разложить матрицу камеры на произведение внутренней и внешней матриц. В следующих двух постах мы рассмотрим внешние и внутренние матрицы более подробно. Сначала мы рассмотрим различные способы взглянуть на внешнюю матрицу с интерактивной демонстрацией в конце.
Внешняя матрица камеры
Внешняя матрица камеры описывает положение камеры в мире и направление, в котором она направлена. Те, кто знаком с OpenGL, знают это как «матрицу просмотра» (или свернутую в «матрицу просмотра модели»). Он состоит из двух компонентов: матрицы вращения R и вектора перемещения t , но, как мы скоро увидим, они не совсем соответствуют повороту и перемещению камеры. Сначала мы исследуем части внешней матрицы, а позже мы рассмотрим альтернативные способы описания позы камеры, которые более интуитивно понятны.
Внешняя матрица принимает форму жесткой матрицы преобразования: матрица вращения 3×3 в левом блоке и вектор-столбец переноса 3×1 справа:
\ [[R \, | \, \ boldsymbol {t}] = \ left [\ begin {array} {ccc | c} r_ {1,1} & r_ {1,2} & r_ {1,3} & t_1 \\ r_ {2,1} & r_ {2,2} & r_ {2,3} & t_2 \\ r_ {3,1} & r_ {3,2} & r_ {3,3} & t_3 \\ \ end {array} \ right] \]
Обычно можно увидеть версию этой матрицы с дополнительной строкой (0,0,0,1), добавленной внизу.Это делает матрицу квадратной, что позволяет нам дополнительно разложить эту матрицу на поворот с последующим переводом на :
\ [ \ begin {align} \оставили [ \ begin {array} {c | c} R & \ boldsymbol {t} \\ \ hline \ boldsymbol {0} & 1 \ end {массив} \ right] & = \оставили [ \ begin {array} {c | c} Я & \ boldsymbol {t} \\ \ hline \ boldsymbol {0} & 1 \ end {массив} \верно ] \ раз \оставили [ \ begin {array} {c | c} R & \ boldsymbol {0} \\ \ hline \ boldsymbol {0} & 1 \ end {массив} \верно ] \\ знак равно \ left [\ begin {array} {ccc | c} 1 & 0 & 0 & t_1 \\ 0 & 1 & 0 & t_2 \\ 0 & 0 & 1 & t_3 \\ \ hline 0 & 0 & 0 & 1 \ end {array} \ right] \ times \ left [\ begin {array} {ccc | c} r_ {1,1} & r_ {1,2} & r_ {1,3} & 0 \\ r_ {2,1} & r_ {2,2} & r_ {2,3} & 0 \\ r_ {3,1} & r_ {3,2} & r_ {3,3} & 0 \\ \ hline 0 & 0 & 0 & 1 \ end {array} \ right] \ end {align} \]
Эта матрица описывает, как преобразовать точки в мировых координатах в координаты камеры.Вектор t можно интерпретировать как положение начала отсчета мира в координатах камеры, а столбцы R представляют направления мировых осей в координатах камеры.
Важно помнить, что внешняя матрица описывает, как мир трансформируется относительно камеры . Это часто противоречит интуиции, потому что мы обычно хотим указать, как камера трансформируется относительно мира .Далее мы рассмотрим два альтернативных способа описания внешних параметров камеры, которые более интуитивно понятны, и способы их преобразования в форму внешней матрицы.
Построение внешней матрицы из позы камеры
Часто более естественно указать позу камеры напрямую, чем указывать, как точки мира должны преобразовываться в координаты камеры. К счастью, построить внешнюю матрицу камеры таким способом легко: просто создайте жесткую матрицу преобразования, которая описывает позу камеры, а затем возьмите ее обратную. TC \\ \ hline \ boldsymbol {0} & 1 \\ \ end {массив} \ right] & \ text {(умножение матриц)} \ end {align}
При применении инверсии мы используем тот факт, что инверсией матрицы вращения является ее транспонирование, а инвертирование матрицы переноса просто инвертирует вектор переноса.Т \\ \ boldsymbol {t} & = -RC \ end {align} \]
Некоторые тексты пишут внешнюю матрицу, заменяя -RC на t , что смешивает мировое преобразование ( R ) и нотацию преобразования камеры ( C ).
Обзорная камера
Читатели, знакомые с OpenGL, могут предпочесть третий способ определения позы камеры с использованием (a) положения камеры, (b) того, на что она смотрит, и (c) направления «вверх».В унаследованном OpenGL это достигается с помощью функции gluLookAt (), поэтому мы назовем эту камеру «обзорной» камерой. Пусть C будет центром камеры, p будет целевой точкой, а u направлен вверх. Алгоритм вычисления матрицы вращения (перефразирован из документации OpenGL):
- Вычислить L = p — C.
- Нормализовать L.
- Вычислить s = L x u. (перекрестное произведение)
- Нормализовать s.
- Вычислить u ‘= s x L.
Тогда матрица внешнего вращения имеет следующий вид:
\ [ R = \ left [ \ begin {array} {ccc} s_1 & s_2 & s_3 \\ u_1 ‘& u_2’ & u_3 ‘\\ -L_1 и -L_2 и -L_3 \ end {массив} \верно] \]
(обновлено 21 мая 2014 г. — транспонированная матрица)
Вы можете получить вектор трансляции так же, как и раньше: t = -RC .
Попробуйте!
Ниже представлена интерактивная демонстрация трех различных способов параметризации внешних параметров камеры.Обратите внимание на то, как камера по-разному перемещается при переключении между тремя параметрами.
Для этого требуется браузер с поддержкой WebGL и включенным Javascript.
Для этой демонстрации требуетсяJavascript.
Слева : сцена с камерой и просмотром объема. Виртуальная плоскость изображения отображается желтым цветом. Справа : изображение камеры.
Настройте внешние параметры, указанные выше.
Это параметризация, ориентированная на мир. Эти параметры описывают, как мир изменяется относительно камеры . Эти параметры соответствуют непосредственно записям в матрице внешней камеры.
При настройке этих параметров обратите внимание на то, как камера перемещается в мире (левая панель), и контрастируйте с параметризацией «ориентированной на камеру»:
- Вращение влияет на положение камеры (синее поле).
- Направление движения камеры зависит от текущего поворота.
- Положительное вращение перемещает камеру по часовой стрелке (или, что эквивалентно, вращает мир против часовой стрелки).
Также обратите внимание, как влияет на изображение (правая панель):
- Вращение никогда не перемещает начало мира (красный шар).
- Изменение \ (t_x \) всегда перемещает сферы по горизонтали, независимо от вращения.
- Увеличение \ (t_z \) всегда перемещает камеру ближе к началу координат мира.
Настройте внешние параметры, указанные выше.
Это параметризация, ориентированная на камеру, которая описывает, как камера изменяется относительно мира . Эти параметры соответствуют элементам матрицы внешней камеры inverse .
При настройке этих параметров обратите внимание на то, как камера перемещается в мире (левая панель), и контрастируйте с параметризацией «мир-центричность»:
- Вращение происходит относительно положения камеры (синий прямоугольник).
- Направление движения камеры не зависит от текущего поворота.
- Положительное вращение вращает камеру против часовой стрелки (или, что эквивалентно, вращает мир по часовой стрелке).
- Увеличение \ (C_y \) всегда перемещает камеру к небу, независимо от поворота.
Также обратите внимание, как влияет на изображение (правая панель):
- При вращении вокруг оси y обе сферы перемещаются по горизонтали.
- При разных поворотах изменение \ (C_x \) перемещает сферы в разных направлениях.
Настройте внешние параметры, указанные выше.
Это параметризация «взгляда», которая описывает ориентацию камеры с точки зрения того, на что она смотрит. Отрегулируйте \ (p_x \), \ (p_y \) и \ (p_z \), чтобы изменить направление взгляда камеры (оранжевая точка).Вектор вверх зафиксирован на (0,1,0) ‘. Обратите внимание, что перемещение центра камеры, * C *, приводит к повороту камеры.
Настройте внутренние параметры, указанные выше. При настройке этих параметров наблюдайте, как изменяется громкость просмотра на левой панели:
- При изменении фокусного расстояния желтая фокальная плоскость перемещается, что меняет угол поля зрения просматриваемого объема.
- Изменение главной точки влияет на то, где зеленая центральная линия пересекает фокальную плоскость.
- Установка наклона на ненулевое значение приводит к тому, что фокальная плоскость становится непрямоугольной
Внутренние параметры приводят только к двумерным преобразованиям; глубина объектов игнорируется. Чтобы убедиться в этом, посмотрите, как на изображение в правой панели влияет изменение внутренних параметров:
- Изменение фокусного расстояния одинаково масштабирует ближнюю и дальнюю сферу.
- Изменение главной точки не влияет на параллакс.
- Никакая комбинация внутренних параметров не позволит выявить закрытые части объекта.
Заключение
Мы только что изучили три различных способа параметризации внешнего состояния камеры. Какую параметризацию вы предпочитаете использовать, зависит от вашего приложения. Если вы пишете шутер от первого лица в стиле Wolfenstein, вам может понравиться параметризация, ориентированная на мир, потому что движение по (t_z) всегда соответствует движению вперед.Или вы можете интерполировать камеру через путевые точки в вашей сцене, и в этом случае предпочтительна параметризация, ориентированная на камеру, поскольку вы можете напрямую указать положение своей камеры. Если вы не уверены, что предпочитаете, поиграйте с указанным выше инструментом и решите, какой подход кажется наиболее естественным.
Присоединяйтесь к нам в следующий раз, когда мы исследуем внутреннюю матрицу, и мы узнаем, почему скрытые части вашей сцены никогда не могут быть обнаружены путем увеличения вашей камеры. Увидимся позже!
Сообщение от Кайл Симек Пожалуйста, включите JavaScript, чтобы просматривать комментарии от Disqus.комментарии в блоге, разработанные Матрица камеры— обзор
3.2 Получение внутренних параметров камеры и трехмерных координат характерных точек
Предполагая, что мировые трехмерные координаты точки P в пространстве равны P w ( x w , у ш , г ш) в опорном кадре камеры, и его соответствующие координаты изображение р ( х р , у р ).Согласно обычной модели камеры-обскуры и искажению объектива [11,12], они связаны следующими уравнениями проекции:
xn = xw / zwyw / zw = xy, r2 = x2 + y2,
xd = xd (1 ) xd (2) = (1 + k1r2 + k2r4) xn + 2p1xy + p2 (r2 + 2×2) p1 (r2 + 2y2) + 2p2xy,
(2) xpyp1 = Kxd (1) xd (2) 1withK = fxα · Fxu00fyv0001.
, где ( u 0 , v 0 ) — главная точка на плоскости изображения, x n и x d — идеальные и фактические координаты изображения p соответственно. f x и f y обозначают эффективное фокусное расстояние, k 1 , k 2 — коэффициенты радиального искажения, а p 1 , p 2 — коэффициенты тангенциального искажения. α — коэффициент перекоса, а K — матрица камеры. Все эти внутренние параметры могут быть получены заранее с помощью некоторых эффективных методов калибровки камеры [13,14], и они считаются фиксированными после калибровки камеры.
Учитывая, что интервал между характерными точками известен, можно получить трехмерные локальные координаты характерных точек в соответствующей системе координат камеры [9], которые обозначаются как aijl и bijr ( i = 1, 2, …, м , j = 1, 2,…, n ) соответственно. Взяв в качестве иллюстрации позу 1 на рис. характерная точка b 11 , b 31 согласно RCCF соответственно.
Однако существует одна потенциальная проблема, заключающаяся в том, что выбросы, которые являются центрами характерных точек, извлеченных на изображении, выходят далеко за пределы их наземной истинности, могут не дать нам правильно вычислить трехмерные координаты характерной точки в пространстве. Хотя мы сделали характерные точки на наших целях светящимися, чтобы избежать этой проблемы в большинстве условий, все же существует вероятность того, что центры одной или двух характерных точек будут извлечены с большой ошибкой. В этом состоянии мы должны использовать алгоритм RANSAC [15] для проверки центра всех характерных точек, извлеченных на одном изображении, с целью обнаружения и устранения возможных выбросов заранее, а затем использовать следы, характерные точки с допустимым шумом. , чтобы продолжить калибровку.И в этой статье мы предполагаем, что все извлеченные точки центра являются промежуточными и действительными.
Предположим, что в позиции j -е единичные направления цели a , b при LCCF и RCCF равны ajl, bjl и ajr, bjr, соответственно, поэтому их можно вычислить по следующему уравнению:
(3) ajl = amjl-a1jl / amjl-a1jl, bjr = bmjr-b1jr / bmjr-b1jr, (j∈ [1, n]).
матриц — Как найти положение и поворот камеры из матрицы 4×4?
Я недостаточно знаком с этой областью, чтобы знать, что такое соглашения, но я могу предоставить некоторый общий контекст.
Однородная матрица камеры размером $ 4 \ times 4 $ преобразует координаты из мирового пространства в пространство камеры. По-видимому, эта матрица , а не , включает перспективную проекцию, поэтому мы фактически говорим об аффинном преобразовании. Сама матрица может сказать вам, где находится камера в мировом пространстве и в каком направлении она указывает, но не может сказать вам ничего другого — для этого вам нужны другие параметры камеры. T \, \ left [\ begin {массив} {c} 0 \\ 0 \\ 1 \ end {array} \ right] $.
Это говорит вам примерно столько, сколько вы можете получить из матрицы. Все остальное зависит от других свойств камеры.
Матрицы— Поиск конкретной матрицы преобразования камеры
Поскольку плоскость, в которой лежат цели, параллельна плоскости изображения, гомография между ними представляет собой простое аффинное преобразование, в частности, равномерное масштабирование с переносом (также с поворотом, если камере разрешено вращаться вокруг своей оси. ) Достаточно легко построить матрицу для этого преобразования.Пусть положение камеры в мировых координатах будет $ \ tilde {\ mathbf C} = (x_c, y_c, z_c) $ с $ z_c \ gt0 $, а эффективное фокусное расстояние камеры будет $ f $, так что плоскость изображения равна $ z = c_z-f $. Соответствующая матрица проекции: $$ \ mathcal P = \ begin {bmatrix} f & 0 & -x_c & (z_c-f) x_c \\ 0 & f & -y_c & (z_c-f) y_c \\ 0 & 0 & — (z_c-f) & (z_c-f ) z_c \\ 0 & 0 & -1 & z_c \ end {bmatrix}. $$ Если мы возьмем точку непосредственно под камерой в качестве начала координат изображения, то мы получим гомографию $$ \ mathcal H = \ begin {bmatrix} \ frac f { z_c} & 0 & — \ frac f {z_c} x_c \\ 0 & \ frac f {z_c} & — \ frac f {z_c} y_c \\ 0 & 0 & 1 \ end {bmatrix} = \ begin {bmatrix} \ frac f {z_c} & 0 & 0 \\ 0 & \ frac f {z_c} & 0 \\ 0 & 0 & 1 \ end {bmatrix} \ begin {bmatrix} 1 & 0 & -x_c \\ 0 & 1 & -y_c \\ 0 & 0 & 1 \ end {bmatrix}, $$ i.{-1} = \ begin {bmatrix} \ frac {z_c} f & 0 & x_c \\ 0 & \ frac {z_c} f & y_c \\ 0 & 0 & 1 \ end {bmatrix}. $$
Как вы восстанавливаете положение камеры в мировых координатах по измеренным местоположениям целей, будет зависеть от того, что вы знаете о камере и целях. Очевидно, поскольку вы знаете направление начала координат от каждой цели, вычисление изображения начала координат мира — это простой вопрос поиска пересечения пары линий. Это дает вам три неколлинеарных точки на изображении $ \ mathbf q_0 $, $ \ mathbf q_1 $ и $ \ mathbf q_2 $ — мировое начало и две цели.{-1}. $$ Из этого вы можете восстановить $ x_c $, $ y_c $ и соотношение $ z_c / f $. К сожалению, не зная эффективного фокусного расстояния $ f $, вы не можете восстановить координату $ z $ камеры. Если вы можете идентифицировать пару линий на изображении, которые соответствуют ортогональным линиям в исходной плоскости, есть способ восстановить $ f $, но в противном случае вам придется получить эту информацию в другом месте.
Если вы не знаете мировые координаты целей, но знаете их фактические размеры, вы можете использовать их для восстановления масштабного коэффициента, и с его помощью вы можете вычислить $ x_c $ и $ y_c $, но для этого потребуется больше данных от изображения, чем только центроиды целей.Если камера имеет неквадратные пиксели и / или имеет перекос, матрица преобразования плоскости источника в изображение будет иметь вид $$ \ begin {bmatrix} s_x & \ alpha & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \ end {bmatrix} $$ с инверсией $$ \ begin {bmatrix} \ frac1 {s_x} & — {\ alpha \ over s_xs_y} & — \ left ({1 \ over s_x} t_x — {\ alpha \ over s_xs_y} t_y \ right) \ \ 0 & \ frac1 {s_y} & — {1 \ over s_y} t_y \\ 0 & 0 & 1 \ end {bmatrix}. $$ Как и прежде, найти $ x $ — и $ y $ -координаты камеры просто — они последний столбец обратной матрицы, но для определения координаты $ z $ потребуется дополнительная информация о камере.\ top $)
Я предполагаю, что традиционные координаты изображения камеры (до проецирования) имеют $ z $ сверление «в» изображение, $ x $, указывающее слева направо, и $ y $, указывающее вниз.
А теперь проследим, как оси надо вращать без смещения: 1. новая ось $ z $ ($ z ‘$) будет указывать вдоль $ v-c $. 1. новая ось $ x $ ($ x ‘$) перпендикулярна $ z $ и $ z’ $ 1. новая ось $ y $ ($ y ‘$) перпендикулярна $ x’ $ и $ z ‘$.
Вы можете найти три вектора, которые указывают вдоль новых осей в мировых координатах, нормализовать их, а затем поместить их в строки $ 3 \ times 3 $ матрицы $ R $: это преобразует мировые координаты в повернутую ориентацию камеры.\ circ $. (Сначала мне было трудно это увидеть, но если вы нарисуете куб и проверите угол между $ (1,1,0) $ и $ (1,1,1) $, вы поймете, что я имею в виду. \ top $ и что местоположение камеры мира $ (10,10,10) $ теперь сопоставляется к исходной точке камеры.Третьей проверки по вашему выбору должно быть достаточно, чтобы убедить вас, что это правильные $ R $ и $ t ‘$.
Одно предостережение: я не уверен на 100%, что шаг с $ z \ times z ‘$ всегда находится в таком порядке. Я выбрал его в данном случае, потому что он давал правильную ориентацию для $ x ‘$ и $ y’ $ в конце. Надеюсь, это все согласуется, но, возможно, все-таки есть некоторая двусмысленность.
Второй вопрос — как построить вектор «ВВЕРХ».
Я не понимаю, о чем вы спрашиваете.\ top + t ‘$.
Наконец, мне придется также повернуть камеру из «альбомной» в «портретной» ориентации.
Я интерпретирую это как то, что вы хотите повернуть плоскость изображения так, чтобы ось $ y $ была горизонтальной, что можно сделать с помощью вращения $ \ pi / 4 $ в любом направлении вокруг камеры $ z $ -ось. \ top $ даст вращение в другое направление.
Модель проекционной камеры| imatest
Устарело в текущей версии
Модель проекционной камеры описывает математику преобразования мировой точки в точку изображения. Это делается с помощью модели камеры с отверстиями. Вместе с моделью искажения, которая характеризует отклонение от модели точечного отверстия, этим методом можно моделировать большинство камер *.
Модель проекционной камеры учитывает только взаимосвязь между мировыми координатами и координатами изображения.j \ left (\ mathbf {X} _ {i} \ right) \)
Существует три компонента для применения модели проективного преобразования: внешние элементы, модель камеры-точечного отверстия и искажение точек для учета разницы между встроенной камерой и моделью-крошечным отверстием.
Проекция трехмерных точек в модели камеры-обскуры.
Изображение проецируемых точек.
Внутренние функции камеры описывают свойства модели камеры-обскуры, которые связывают относительные мировые координаты камеры относительно камеры с координатами изображения.В модели крошечного отверстия лучи проходят по прямой линии от объекта в сцене через крошечное отверстие к фокальной плоскости. Геометрия этого подобна треугольникам, связывающим мировые координаты с координатами изображения. Математическая модель для этого использует 5 параметров: фокусное расстояние в направлениях x и y, основная точка в направлениях x и y и перекос между направлениями x и y.
Параметры
Фокусное расстояние
В модели точечного отверстия фокусное расстояние, \ (f \) — это расстояние от точечного отверстия до фокальной плоскости вдоль оптической оси.Системы с большим фокусным расстоянием будут иметь большее увеличение в более узком поле зрения (FOV), тогда как меньшие фокусные расстояния будут иметь больший охват.
Возможно иметь разное фокусное расстояние вдоль каждого направления фокальной плоскости. В этом случае фокусное расстояние оси \ (y \) изменяется на \ (\ alpha \).
\ (f_y = \ alpha \ cdot f \)
Для настоящей камеры-обскуры \ (f_x = f_y \) (\ (\ alpha = 1 \)), однако на практике это может быть связано с факторами, включая производственные дефекты, искажение объектива и изображения, полученные с помощью системы сканирования.Интерпретация неравных фокусных расстояний заключается в том, что эффективная форма пикселя не является квадратной.
Принцип действия
Точка \ ((pp_x, pp_y) \) — это основная точка, которая представляет собой пиксельную координату пересечения оптической оси с фокальной плоскостью. Функция сдвига наклона-сдвига перемещает фокальную плоскость (и главную точку) вокруг оптической оси.
перекос
Фактор перекоса \ (s \) вводит сдвиговое преобразование изображения.Для многих камер это 0. Случаи, когда оно не равно нулю, включают в себя фотографирование изображения (введение гомографии) и несинхронизацию процесса выборки пикселей из фреймграббера. Ненулевой перекос означает, что оси x и y камеры не перпендикулярны друг другу.
Внутренняя матрица
Внутренняя матрица, \ (\ mathbf {K} \) — это верхнетреугольная матрица, которая преобразует мировую координату относительно камеры в координату однородного изображения. Существует две общие и эквивалентные формы внутренней матрицы:
\ (\ mathbf {K} = \ begin {bmatrix} f & s & pp_x \\ 0 & f \ cdot \ alpha & pp_y \\ 0 & 0 & 1 \ end {bmatrix} \)
\ (\ mathbf {K} = \ begin {bmatrix} f_x & s & pp_x \\ 0 & f_y & pp_y \\ 0 & 0 & 1 \ end {bmatrix} \)
Многие камеры могут быть представлены с более простой внутренней матрицей. \ top \) будет точкой относительно камеры.Предположим, что
\ (\ begin {bmatrix} x \\ y \\ w \ end {bmatrix} = \ begin {bmatrix} f & 0 & pp_x \\ 0 & f & pp_y \\ 0 & 0 & 1 \ end {bmatrix} \ begin {bmatrix} X \\ Y \\ Z \ end {bmatrix} \)
\ (\ begin {bmatrix} x \\ y \\ w \ end {bmatrix} = \ begin {bmatrix} f \ cdot X + pp_x \ cdot Z \\ f \ cdot Y + pp_y \ cdot Z \\ Z \ конец {bmatrix} \)
После преобразования в неоднородные координаты
\ (\ begin {bmatrix} x ‘\\ y’ \ end {bmatrix} = \ begin {bmatrix} \ displaystyle \ frac {f \ cdot X + pp_x \ cdot Z} {Z} \\ \ displaystyle \ frac { е \ cdot Y + pp_y \ cdot Z} {Z} \ end {bmatrix} = \ begin {bmatrix} f \ cdot \ displaystyle \ frac {X} {Z} + pp_x \\ f \ cdot \ displaystyle \ frac {Y } {Z} + pp_y \ end {bmatrix} \)
Проверка этого результата показывает, что расстояние от оптической оси (основной точки) пропорционально отношению расстояния мировых точек от оптической оси к расстоянию до камеры.Это означает, что точка, которая вдвое дальше от оптической оси и вдвое дальше от камеры, будет соответствовать той же точке изображения. Лучшая реконструкция точки с помощью одной камеры — это то, что точка находится где-то на линии.
Квартир
Все эти значения рассчитываются в единицах количества пикселей. Шаг пикселя \ (p \) используется для преобразования количества пикселей в физические единицы. Например:
\ (f [\ mathrm {mm}] = f [\ mathrm {пикселей}] \ cdot p \ left [\ frac {\ mu \ mathrm {m}} {\ mathrm {pixel}} \ right] \ cdot \ гидроразрыв {1 [\ mathrm {mm}]} {1000 [\ mu \ mathrm {m}]} \)
Обратный
Инверсия внутренней матрицы камеры используется для преобразования неискаженных точек изображения в линии от центра камеры.{-1} = \ displaystyle \ frac {1} {f} \ begin {bmatrix} 1 & 0 & -pp_x \\ 0 & 1 & -pp_y \\ 0 & 0 & f \ end {bmatrix} \)
Модель искажения камеры описывает отклонение физической камеры от модели проекционной камеры. Он преобразует неискаженные точки 2D-изображения в точки искаженного 2D-изображения (те, которые находятся за пределами камеры). Модель обратной дисторсии преобразует точки искаженного изображения в неискаженные.
Внешний вид камеры описывает положение и ориентацию камеры в мире.Существует два способа описания преобразования координат между мировыми координатами и координатами относительно камеры: преобразование точки и преобразование осей (поза). Они оба имеют одинаковую форму матрицы вращения / переноса и являются противоположными друг другу.
Центр камеры соответствует расположению входного зрачка камеры. В панорамной фотографии это часто называют точкой отсутствия параллакса. Камеры с большим полем зрения (например, камеры «рыбий глаз») будут иметь разные положения входного зрачка при разных углах поля зрения.Для этих камер используется осевое расположение входного зрачка.
Преобразование точек
Описание преобразования точки преобразует мировую точку в точку относительно камеры. Его матрица вращения / перемещения прямо умножается вправо на внутреннюю матрицу для формирования матрицы камеры. {\ top} \ mathbf {t} \\ &&& \ end {array} \ right] \ begin {bmatrix} X \\ Y \\ Z \\ 1 \ end {bmatrix} \)
В обозначении позы камеры центр камеры расположен в \ (\ mathbf {t} \).
Матрица камеры, \ (\ mathbf {P} \), представляет собой комбинацию внутренней матрицы камеры и точечного преобразования.
\ (\ mathbf {P} = \ left [\ begin {array} {ccc} && \\ & \ mathbf {K} & \\ && \ end {array} \ right] \ left [\ begin {array} { ccc | c} &&& \\ & \ mathbf {R} && \ mathbf {t} \\ &&& \ end {array} \ right] \)
Матрица камеры преобразует точки мира в координаты однородного изображения.
Мировые очки к точкам изображений
- Преобразует мировую координату в координату относительно камеры путем умножения на мировую точку в преобразование точки изображения.Это преобразование является обратной позе.
- Примените внутреннюю матрицу камеры к относительной координате камеры, чтобы получить однородную координату изображения.
- Преобразует однородную координату изображения в неоднородную координату.
- Примените модель искажения, чтобы определить положение изображения мировой точки на фокальной плоскости.
Обозначение преобразования точек
\ (\ begin {bmatrix} x \\ y \\ w \ end {bmatrix} = \ underbrace {\ left [\ begin {array} {ccc} && \\ & \ mathbf {K} & \\ && \ end {array} \ right]} _ {\ mathrm {intrinics}} \ underbrace {\ left [\ begin {array} {ccc | c} &&& \\ & \ mathbf {R} && \ mathbf {t} \\ &&& \ конец {массив} \ right]} _ {\ mathrm {обратная \ поза}} \ begin {bmatrix} X \\ Y \\ Z \\ 1 \ end {bmatrix} \)
\ (\ begin {bmatrix} x ‘\\ y’ \ end {bmatrix} = \ begin {bmatrix} \ mathrm {distort} _ {x} \! \! \ Left (\ displaystyle \ frac {x} {w } \ right) \\\ mathrm {искажать} _ {y} \! \! \ left (\ displaystyle \ frac {y} {w} \ right) \ end {bmatrix} \)
Обозначение преобразования осей
\ (\ begin {bmatrix} x \\ y \\ w \ end {bmatrix} = \ underbrace {\ left [\ begin {array} {ccc} && \\ & \ mathbf {K} & \\ && \ end {array} \ right]} _ {\ mathrm {intrinics}} \ underbrace {\ left [\ begin {array} {ccc | c} &&& \\ & \ mathbf {R} ^ {\ top} && — \ mathbf { R} ^ {\ top} \ mathbf {t} \\ &&& \ end {array} \ right]} _ {\ mathrm {inverse \ pose}} \ begin {bmatrix} X \\ Y \\ Z \\ 1 \ конец {bmatrix} \)
\ (\ begin {bmatrix} x ‘\\ y’ \ end {bmatrix} = \ begin {bmatrix} \ mathrm {distort} _ {x} \! \! \ Left (\ displaystyle \ frac {x} {w } \ right) \\\ mathrm {искажать} _ {y} \! \! \ left (\ displaystyle \ frac {y} {w} \ right) \ end {bmatrix} \)
Изображение указывает на линии
- Примените модель обратного искажения, чтобы неискажать точки изображения.Это помещает их в геометрию камеры-обскуры.
- Преобразуйте координату изображения в однородную координату с весом \ (w \). Можно использовать любое действительное, отличное от нуля \ (w \), однако два общих из них — это 1 или расстояние от центра камеры до мировой точки.
- Умножьте координату однородного изображения на значение, обратное внутренней матрице камеры. Этот вектор является вектором направления линии между точкой и центром камеры в координатах относительно камеры.
- Примените поворот позы камеры (обратный матрице точечного преобразования) к вектору направления.\ top \ right | \ right | \) — расстояние от центра камеры (расположение входного зрачка) до мировой точки.
% PDF-1.6 % 227 0 объект> эндобдж xref 227 238 0000000016 00000 н. 0000006706 00000 н. 0000006824 00000 н. 0000006859 00000 н. 0000007065 00000 н. 0000007308 00000 н. 0000007357 00000 н. 0000007378 00000 н. 0000007399 00000 н. 0000008087 00000 н. 0000008591 00000 н. 0000009145 00000 н. 0000009780 00000 н. 0000010361 00000 п. 0000010920 00000 п. 0000011514 00000 п. 0000012083 00000 п. 0000012214 00000 п. 0000012438 00000 п. 0000012662 00000 п. 0000012887 00000 п. 0000013017 00000 п. 0000013149 00000 п. 0000013279 00000 п. 0000013408 00000 п. 0000013539 00000 п. 0000013762 00000 п. 0000013893 00000 п. 0000014025 00000 п. 0000021480 00000 п. 0000021727 00000 н. 0000022344 00000 п. 0000022816 00000 п. 0000023297 00000 п. 0000023565 00000 п. 0000023824 00000 п. 0000024035 00000 п. 0000024342 00000 п. 0000024567 00000 п. 0000024759 00000 п. 0000024979 00000 п. 0000025245 00000 п. 0000025422 00000 п. 0000025600 00000 п. 0000025847 00000 п. 0000026152 00000 п. 0000026431 00000 н. 0000026761 00000 п. 0000027025 00000 п. 0000027276 00000 н. 0000027493 00000 п. 0000027751 00000 п. 0000028017 00000 п. 0000028289 00000 п. 0000028499 00000 н. 0000028764 00000 п. 0000028985 00000 п. 0000029221 00000 п. 0000029444 00000 п. 0000029768 00000 п. 0000030021 00000 п. 0000030216 00000 п. 0000030519 00000 п. 0000030695 00000 п. 0000031008 00000 п. 0000031218 00000 п. 0000031532 00000 п. 0000031841 00000 п. 0000032121 00000 п. 0000032410 00000 п. 0000032647 00000 п. 0000033026 00000 п. 0000033317 00000 п. 0000033643 00000 п. 0000033863 00000 п. 0000034124 00000 п. 0000034434 00000 п. 0000034811 00000 п. 0000035160 00000 п. 0000035405 00000 п. 0000035647 00000 п. 0000035925 00000 п. 0000036126 00000 п. 0000036400 00000 п. 0000036668 00000 н. 0000036920 00000 н. 0000037120 00000 п. 0000037379 00000 п. 0000037637 00000 п. 0000037838 00000 п. 0000038001 00000 п. 0000038164 00000 п. 0000038355 00000 п. 0000038653 00000 п. 0000038958 00000 п. 0000039216 00000 п. 0000039512 00000 п. 0000039825 00000 п. 0000040092 00000 п. 0000040427 00000 п. 0000040598 00000 п. 0000041445 00000 п. 0000041847 00000 п. 0000042360 00000 п. 0000042626 00000 п. 0000042887 00000 п. 0000043112 00000 п. 0000043446 00000 п. 0000043673 00000 п. 0000043865 00000 п. 0000044108 00000 п. 0000044283 00000 п. 0000044541 00000 п. 0000044867 00000 п. 0000045200 00000 п. 0000045421 00000 п. 0000045667 00000 п. 0000045930 00000 п. 0000046144 00000 п. 0000046401 00000 п. 0000046621 00000 н. 0000046850 00000 п. 0000047069 00000 п. 0000047338 00000 н. 0000047530 00000 п. 0000047836 00000 п. 0000048007 00000 п. 0000048340 00000 п. 0000048663 00000 п. 0000048982 00000 п. 0000049266 00000 п. 0000049581 00000 п. 0000049816 00000 п. 0000050203 00000 п. 0000050506 00000 п. 0000050839 00000 п. 0000051061 00000 п. 0000051327 00000 п. 0000051567 00000 п. 0000051851 00000 п. 0000052120 00000 н. 0000052381 00000 п. 0000052635 00000 п. 0000052905 00000 п. 0000053171 00000 п. 0000053384 00000 п. 0000053549 00000 п. 0000053721 00000 п. 0000053913 00000 п. 0000054220 00000 п. 0000054478 00000 п. 0000054783 00000 п. 0000055053 00000 п. 0000055234 00000 п. 0000055875 00000 п. 0000056298 00000 п. 0000056755 00000 п. 0000057046 00000 п. 0000057342 00000 п. 0000057579 00000 п. 0000057930 00000 п. 0000058167 00000 п. 0000058368 00000 п. 0000058624 00000 п. 0000058914 00000 п. 0000059091 00000 п. 0000059370 00000 п. 0000059731 00000 п. 0000060036 00000 п. 0000060412 00000 п. 0000060711 00000 п. 0000060989 00000 п. 0000061221 00000 п. 0000061504 00000 п. 0000061801 00000 п. 0000062108 00000 п. 0000062339 00000 п. 0000062632 00000 п. 0000062875 00000 п. 0000063118 00000 п. 0000063354 00000 п. 0000063724 00000 п. 0000064010 00000 п. 0000064201 00000 п. 0000064547 00000 п. 0000064895 00000 п. 0000065251 00000 п. 0000065555 00000 п. 0000065892 00000 п. 0000066147 00000 п. 0000066468 00000 п. 0000066843 00000 п. 0000067075 00000 п. 0000067467 00000 п. 0000067724 00000 п. 0000068026 00000 п. 0000068328 00000 п. 0000068627 00000 н. 0000068911 00000 п. 0000069148 00000 п. 0000069451 00000 п. 0000069745 00000 п.