Примеры схем: Схемы электрические. Типы схем / Habr – Примеры блок-схем, организованных диаграмм и других

Примеры схем: Схемы электрические. Типы схем / Habr – Примеры блок-схем, организованных диаграмм и других

admin 21.01.2020

Содержание

Схемы электрические. Типы схем / Habr

Привет Хабр!
Чаще в статьях приводят вместо электрических схем красочные картинки, из-за этого возникают споры в комментариях.
В связи с этим, решил написать небольшую статью-ликбез по типам электрических схем, классифицируемых в Единой системе конструкторской документации (ЕСКД).

На протяжении всей статьи буду опираться на ЕСКД.
Рассмотрим ГОСТ 2.701-2008 Единая система конструкторской документации (ЕСКД). Схемы. Виды и типы. Общие требования к выполнению.
Данный ГОСТ вводит понятия:

  • вид схемы — классификационная группировка схем, выделяемая по признакам принципа действия, состава изделия и связей между его составными частями;
  • тип схемы — классификационная группировка, выделяемая по признаку их основного назначения.

Сразу договоримся, что вид схем у нас будет единственный — схема электрическая (Э).
Разберемся какие типы схем описаны в данном ГОСТе.

Далее рассмотрим каждый тип схем более подробно применительно для электрических схем.
Основной документ:
ГОСТ 2.702-2011 Единая система конструкторской документации (ЕСКД). Правила выполнения электрических схем
.
Так, что же такое и с чем «едят» эти схемы электрические?
Нам даст ответ ГОСТ 2.702-2011: Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи.

Схемы электрические в зависимости от основного назначения подразделяют на следующие типы:


Схема электрическая структурная (Э1)

На структурной схеме изображают все основные функциональные части изделия (элементы, устройства и функциональные группы) и основные взаимосвязи между ними. Графическое построение схемы должно обеспечивать наилучшее представление о последовательности взаимодействия функциональных частей в изделии. На линиях взаимосвязей рекомендуется стрелками обозначать направление хода процессов, происходящих в изделии.
Пример схемы электрической структурной:

Схема электрическая функциональная (Э2)

На функциональной схеме изображают функциональные части изделия (элементы, устройства и функциональные группы), участвующие в процессе, иллюстрируемом схемой, и связи между этими частями. Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой.
Пример схемы электрической функциональной:

Схема электрическая принципиальная (полная) (Э3)

На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии установленных электрических процессов, все электрические взаимосвязи между ними, а также электрические элементы (соединители, зажимы и т.д.), которыми заканчиваются входные и выходные цепи. На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям. Схемы выполняют для изделий, находящихся в отключенном положении.
Пример схемы электрической принципиальной:

Схема электрическая соединений (монтажная) (Э4)

На схеме соединений следует изображать все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т.д.), а также соединения между этими устройствами и элементами. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии. Расположение изображений входных и выходных элементов или выводов внутри графических обозначений и устройств или элементов должно примерно соответствовать их действительному размещению в устройстве или элементе.
Пример схемы электрической соединений:


Схема электрическая подключения (Э5)

На схеме подключения должны быть изображены изделие, его входные и выходные элементы (соединители, зажимы и т.д.) и подводимые к ним концы проводов и кабелей (многожильных проводов, электрических шнуров) внешнего монтажа, около которых помещают данные о подключении изделия (характеристики внешних цепей и (или) адреса). Размещение изображений входных и выходных элементов внутри графического обозначения изделия должно примерно соответствовать их действительному размещению в изделии. На схеме следует указывать позиционные обозначения входных и выходных элементов, присвоенные им на принципиальной схеме изделия.
Пример схемы электрической подключений:

Схема электрическая общая (Э6)

На общей схеме изображают устройства и элементы, входящие в комплекс, а также провода, жгуты и кабели (многожильные провода, электрические шнуры), соединяющие эти устройства и элементы. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.
Пример схемы электрической общей:

Схема электрическая расположения (Э7)

На схеме расположения изображают составные части изделия, а при необходимости связи между ними — конструкцию, помещение или местность, на которых эти составные части будут расположены.
Пример схемы электрической расположения:

Схема электрическая объединенная (Э0)

На данном виде схем изображают различные типы, которые объединяются между собой на одном чертеже.
Пример схемы электрической объединенной:
PS

Это моя первая статья на Хабре не судите строго.

Схемы — урок. Информатика, 6 класс.

В повседневной жизни нас окружает множество разнообразных схем: схемы проезда, схемы дорожных развязок, схема метрополитена, схема расположения мест в зрительном зале, схема движения пригородных электропоездов и многое другое.

Схема — это представление некоторого объекта в общих, главных чертах с помощью условных обозначений. С помощью схемы может быть представлен и внешний вид объекта, и его структура.

Например, внешний вид зрительного зала:

 

 

Представление о внешнем виде квартиры:

 

 

Представлена схема метро:


Уменьшенное обобщённое изображение поверхности Земли на плоскости в той или иной системе условных обозначений дает нам географическая карта. На карте изображён внешний вид территории северо-восточной части Центральной России. На ней показаны древние русские города, образующие знаменитое на весь мир Золотое кольцо.


 

Представленные схемы являются информационными моделями внешнего вида соответствующих объектов. Они предназначены для того, чтобы у человека была возможность, например, выбрать подходящее место в зрительном зале, оценить размеры и расположение комнат будущей квартиры, разработать маршрут путешествия по Золотому кольцу, добраться до Бородинского поля и т. д.

 

Для этих моделей большое значение имеет соблюдение масштаба. Для схемы проезда и карты также значение имеет соблюдение ориентации по сторонам света. Но, несмотря на точность рассмотренных информационных моделей, более подробные сведения об изображённых на них объектах (местах в зале, домах, дорогах, городах) из них получить нельзя.

 

Схема как информационная модель не претендует на полноту предоставления информации об объекте. С помощью особых приёмов и графических обозначений на ней более рельефно выделяется один или несколько признаков рассматриваемого объекта.

 

Например, туристический маршрут «Золотое кольцо России» более образно запечатлён на схеме:

 

 

Здесь не полностью выдержан масштаб, но зато акцентировано внимание на городах, образующих Золотое кольцо, и их достопримечательностях.

Чертежи — условные графические изображения предметов с точным соотношением их размеров, получаемые методом проецирования.

Рисунок содержит изображения, размерные числа, текст. Изображения дают представления о геометрической форме детали, числа — о величине детали и её частей, надписи — о названии, масштабе, в котором выполнены изображения, материале, из которого изготовлена деталь.

 

Источники:

Босова Л. Л., Информатика и ИКТ : учебник для 6 класса. М. : БИНОМ. Лаборатория знаний, 100 с.

их классификация и назначение по ГОСТ

При эксплуатации электрического оборудования нередко приходится иметь дело со схематическим обозначением на всевозможных графических изображениях. В них иногда бывает тяжело разобраться даже бывалым электрикам из-за большого разнообразия их типов, которые отличаются назначением и принципом исполнения.  Именно поэтому необходимо детально рассмотреть деление на виды электрических схем и особенности каждой из них.

Общая классификация

Само понятие подразумевает под собой комплекс условных обозначений, которые предназначены для определения каких-либо конструктивных элементов или частей. В соответствии с правилами и требованиями ГОСТ 2.701-84 выделяют несколько видов, отличающихся как сферой применения, так и типом устанавливаемых обозначений.

Разделение по видам приведено в таблице ниже:

Таблица: разновидности схема

Вид схемы Буквенное обозначение
1 Электрические Э
2 Гидравлические Г
3 Пневматические П
4 Газовые (кроме пневматических) X
5 Кинематические К
6 Вакуумные В
7 Оптические Л
8 Энергетические Р
9 Деления Е
10 Комбинированные С

Так, для одного и того же устройства или объекта, при необходимости, могут разрабатываться сразу несколько схем, поясняющих принцип подключения, работы или реализации функций.  Для электротехнического оборудования схемы подразделяются на несколько типов:

  • Принципиальные или полные – обозначаются цифрой 3;
  • Структурные – обозначаются цифрой 1;
  • Функциональные – обозначаются цифрой 2;
  • Общие – обозначаются цифрой 6;
  • Монтажные или схемы соединений – обозначаются цифрой 4;
  • Подключений – обозначаются цифрой 5;
  • Расположения и объединенные – обозначаются цифрой 7 и 0 соответственно.

При составлении конкретной схемы используется, как правило, буквенно-цифровые обозначения, к примеру, для электрической функциональной маркировка будет выглядеть как Э2, для газовой структурной Х1 и т.д.

Принципы графического обозначения каких-либо элементов на схемах определяются отраслевыми и государственными стандартами. Они же устанавливают требования к расположению составных частей, их размеры, нанесение шифров, наименований или маркировок.

Определение и назначение каждой электросхемы

Каждый вид электрической схемы реализуется в виде чертежа или графического изображения, выполненного вручную или посредством печатных приспособлений. Основные отличия обусловлены описанием тех или иных функций, указанием последовательности, принципа действия или привязкой к чему-либо.

Принцип построения схем регламентируется стандартом ЕСКД, который реализуется рядом нормативных документов, среди которых достаточно важными считаются ГОСТ 2.702-2011, а также ГОСТ 2.708-81.

Они устанавливают:

  • требования к изображениями;
  • принципам расположения компонентов;
  • оформления чертежей;
  • нанесению обозначений и технических характеристик.

Далее детально рассмотрим особенности каждого вида электрических схем.

Принципиальная (полная)

Принципиальная схема предназначена для пояснения принципа действия того или иного устройства. Наиболее часто ее применяют для различных распределительных устройств в силовых цепях, каких-либо приборов и т.д.

Пример принципиальной схемыПример принципиальной схемы

На принципиальных схемах обязательно указываются действующие электрические компоненты и проводимые связи между ними, силовые контакты и электрически узлы, соединяющие радиодетали. В свою очередь, такие электрические схемы подразделяются на два подвида: однолинейные и полные.

Однолинейные также называют первичными цепями, на них, как правило, обозначается силовая часть оборудования или электроустановки. С другой стороны однолинейная схема широко распространена для обозначения трехфазных цепей, где все оборудование на трех фазах имеет идентичное расположение и подключение. За счет чего в однолинейном варианте демонстрируется только одна фаза с  некоторыми отступлениями в местах, где оборудование на разных фазах отличается.

Кроме силовых цепей существуют и слаботочные, для питания защит, средств измерительной техники и различных электронных устройств. Такие схемы вторичных цепей называются полными, так как показывают полную картину всего оборудования, выделяя даже состояние некоторых контактов и частей оборудования. Увы, из-за сложности современной аппаратуры, далеко не все устройства можно изобразить на одном листе, поэтому полные бывают элементными и развернутыми.

Полная схемаПолная схема

Структурная

На структурных схемах осуществляется общее изображение устройства, все компоненты или отдельные узлы которого выполняются в виде блоков, обозначающих оборудование, а связи между блоками могут говорить о тех или иных операциях, связующих отдельные блоки между собой.

Структурная схемаСтруктурная схема

Этот тип графического изображения  призван дать общее представление об устройстве и принципе действия, поэтому на них часто проставлены стрелочки, имеются поясняющие надписи и прочие обозначения, упрощающие понимание процесса или поясняющие работу прибора. Для работы с таким изображением не нужно иметь электротехнического образования, так как ее обозначения будут понятны даже не искушенному в электричестве человеку.

Функциональная

Функциональная схема является более детальным вариантом структурной, на ней также все элементы изображаются отдельными блоками. Главное отличие в том, что каждый блок имеет уже индивидуальную форму обозначения в соответствии с  его функциональным назначением. Возможно также выделение различных видов связей между частями, объединение деталей в блоки и т.д.

Функциональная схемаФункциональная схема

Общая

Общая схема предназначена для изображения мест расположения электрических аппаратов на местности или в пределах электроустановки. Определяет основные типы электрических соединений этих аппаратов, места их реализации и т.д. Данный тип является обязательным при разработке различных конструкторских документов на этапе проектирования. Но кроме общей, конструкторская документация включает в себя еще две не менее важные схемы – соединений и подключений.

Общая схемаОбщая схема

Схема соединений (монтажная)

Схема соединения используется для графического изображения мест подключения электрооборудования. На ней указываются конкретная привязка к частям зданий, распредустановок, по отношению к которым и должен осуществляться монтаж электрооборудования, благодаря чему такой тип схем еще называют монтажными.

Наиболее часто монтажные схемы используются для обозначения разводки электрических цепей в здании, широко применяются во время ремонта, чтобы обозначить места прокладки проводки, установки распределительных коробок и вывода точек подключения к приборам и контактам аппаратов.

Монтажная схемаМонтажная схема

На рисунке выше приведен пример монтажной схемы, как видите, для каждого варианта могут устанавливаться свои условные обозначения, указываемые отдельно. Имеются привязки к каждой конкретной комнате и планируемому электрооборудованию, осветительным приборам и т.д. В дальнейшем она используется не только для монтажных работ, но может применяться и в процессе эксплуатации.

Подключений

Схема подключения используется для указания принципов соединения различных электрических или электронных блоков в единую систему. Иногда предполагается, что блоки имеют территориальное разделение, в других ситуациях они могут находиться в пределах одного распределительного устройства, шинной сборки или стойки. Ее пример  приведен на рисунке ниже:

Схема подключенияСхема подключения

В зависимости от сложности графического изображения и количества отображаемых подключений оно может дополняться таблицами соединений для пояснения порядка расположения выводов и подключения изделия.

Расположения

Также входит в состав проектной документации и помогает определить местоположения всех частей электроустановки относительно друг друга и других значимых объектов.

Схема расположенияСхема расположения

На схеме расположения могут наноситься:

  • составные части всего объекта, а при необходимости и связи между всеми частями;
  • соединительные провода, кабели, шнуры и т.д. в упрощенном виде;
  • наименование каждого элемента, его тип и документ, на основании которого он применяется.

Такое изображение может выполняться как в двухмерном, так и в трехмерном пространстве. Но в любом случае изображение должно соблюдать масштаб по отношению к натурным размерам и расстояниям.

Трехмерная схема расположенияТрехмерная схема расположения

Объединенная

Объединенная схемаОбъединенная схема

Объединенная схема строиться на основании нескольких типов изображений, рассмотренных нами ранее. Такое построение призвано упростить работу электромонтажников или проектировщиков за счет объединения различной информации в единое целое. Но на практике далеко не всегда целесообразно объединять несколько типов графических элементов. Это связанно со сложностью некоторых приборов и устройств, в которых из-за нагромождения элементов довольно сложно объединять разные изображения.

Как составить схему предложения: основные виды с примерами

Раз вы тут оказались, наверняка вы школьник, которому надо составить схему предложения. Это стандартное домашнее задание. Схема обычно делается в рамках синтаксического разбора предложения, но бывает и отдельно.

Предлагаю пройти тест – ответить на пять вопросов по схеме предложения.

[quiz-cat id=”2243″]

Ну как, что получили? А теперь объяснения.

Алгоритм составления схемы предложения

  1. Внимательно прочитайте предложение.
  2. Найдите подлежащее и сказуемое – грамматическую основу предложения. Грамматических основ может быть и несколько, в этом случае предложение сложное. Подчеркните подлежащее одной чертой и сказуемое двумя чертами.
  3. Определите, простое или сложное предложение.
  4. Обозначьте границы предложений вертикальными черточками. Отметьте границы простых предложений.
  5. Для сложных предложений определите союзную связь: сложносочиненное или сложноподчиненное предложение. Сочинительный или подчинительный союз.
  6. Выделите деепричастный и причастный оборот, если есть.
  7. Найдите второстепенные члены предложения. Подчеркните их так:
    • определение – волнистая линия
    • дополнение – пунктир;
    • обстоятельство – точка, тире, точка, тире;
    • деепричастный оборот – точка, тире, точка, тире, выделяется с двух сторон вертикальными чёрточками;
    • причастный оборот – волнистая линия, выделяется с двух сторон вертикальными чертами.

Графические обозначения

Главное предложение обозначается квадратными скобками, а придаточное – круглыми.

Настя сказала, что она пошла домой.

[-=],(что…).

Графические обозначения в схеме

Еще примеры с круглыми и квадратными скобками к схемам на рисунке. Все это сложноподчиненные предложения:

Настя шла и молилась, чтобы мама ее не ругала.

[-==],(чтобы…).

Когда Настя засобиралась домой, пошел снег.

(Когда…),[=-].

В том городе, где находится дом Насти, пошел снег.

[…,(где),=-].

Схема простого предложения

А теперь вернемся к простым предложениям. Начнем с самого простого:

Настя шла.

[-=].

Это простое предложение, проще некуда. Нераспространенное, так как в нем есть  только подлежащее и сказуемое.  Двусоставное, так как оба – и подлежащее, и сказуемое – есть.

Вот это уже распространенное предложение, так как помимо главных членов, есть второстепенный член:

Настя шла домой.

[-=…].

Приведу также примеры односоставных предложения. В них присутствует только один член – либо подлежащее, либо сказуемое. Первое предложение – назывное, главный член – подлежащее:

Снег.

[-].

Вот безличное односоставное предложение,  где главный член – сказуемое:

Вечереет.

[=].

Вот определенно-личное предложение, в котором главный член – сказуемое.

Желаю тебе добра.

[=…].

Но все эти детали (безличное, неопределенно-личное) в школе запоминать не надо, главное указать подлежащее со сказуемым. Что такое односоставные предложения вообще-то проходят в каком-то классе, но безличные они или неопределенно-личные, по-моему, уже не проходят.

Бывают еще простые и сложные сказуемые. Простое:

Настя собиралась домой.

[-=…].

Далее сложное глагольное. Здесь глагол один – “собиралась идти”. Не дайте ввести себя в заблуждение двумя словами, из которых он состоит:

Настя собиралась идти домой.

[-=…].

И сложное именное:

Настя рада быть полезной.

[-=…].

Схемы с обращениями и вводными словами

Настя, иди уже домой!

[|O|,…]!

В схеме обращения обозначаются O и обособляются вертикальными черточками. Обращения не являются членами предложения, потому и обособляются черточками. Они могут быть расположены в любом месте предложения. В схему обычно переносятся стоящие при них знаки препинания.

Пожалуйста, Настя, иди уже домой!

[…|O|,…]!

Вводные слова тоже не являются членами предложения и обособляются вертикальными линиями. Обозначаются они ВВ:

Кажется, Насте пора домой.

[|ВВ|,…].

Схемы с причастными и деепричастными оборотами

“Выйдя из дома” – деепричастный оборот ДО:

Выйдя из дома, Настя внезапно остановилась.

[|ДО|,…].

“постепенно сгущавшийся” – причастный оборот ПО:

Туман, постепенно сгущавшийся, делал передвижение Насти трудным.

[X,|ПО|,…].

Крестиком тут обозначено главное слово “туман”. Туман какой? Постепенно сгущавшийся. От него задается вопрос, потому это главное слово.

Деепричастный оборот может стоять в любом месте:

Настя, выйдя из дома, внезапно остановилась.

[…|ДО|,…].

Схемы с прямой речью

В таких схемах обозначаются границы, прямая речь, слова автора и стоящие при них знаки препинания. Например:

“Настя, или домой!” – громко сказал кто-то.

«[П!]»- [а].

Кто-то сказал: “Настя, или домой!”.

[A]:«[П!]»

Кто-то сказал: “Настя, или домой!” – и Петя не возразил.

[A]:«[П!]» – [a].

Схема сложного предложения

В сложносочиненном предложении обе части равноправны, ни одна не подчинена другой.

Вот сложносочиненное предложение с союзом “а”:

Настя шла, а туман застилал ей дорогу.

[-=],а [-=].

А вот сложносочиненное предложение с союзом “и”:

Снег падал, и ветер усилился.

[-=],и [-=].

 Сложносочиненное бессоюзное:

Снег падал, темнело.

[-=],[=].

В сложноподчиненном предложении есть главное и придаточное, поэтому иногда схемы составляют вертикально, если уровней зависимости несколько. Главное – в квадратных скобках, зависимое – в круглых:

Насте рассказали, что ее ждет испытание.

[-=],(что…).

Если еще уточнить, какое именно испытание ее ждет, получится три уровня:

Насте рассказали, что ее ждет испытание, которое определит ее жизнь.

[-=],(что…),(которое…).

Тут обе пары круглых скобок выглядят одинаково, тогда как на деле “какое испытание” – это второй уровень вложенности. Сначала “что ждет” – “испытание”. Потом “какое” – “которое определит”:

[-=],
(что…),
(которое…).

Но не всегда несколько придаточных предложений означают, что они все на разных уровнях. Два придаточных могут быть второстепенными по отношению к главному, но абсолютно равны между собой:

Когда Петя подошел, Настя прищурилась, чтобы лучше рассмотреть его.

(когда…),[-=],(чтобы…).

Настя прищурилась когда? Когда Петя подошел.

Настя прищурилась зачем? Чтобы лучше рассмотреть его.

Оба придаточных относятся к “Настя прищурилась” – уточняют зачем и когда она это сделала. А не одно придаточное уточняет другое придаточное. Оба равноправны, так как каждое уточняет главное:

[-=],
(когда…),        (чтобы…).

 

примеры, элементы, построение. Блок-схемы алгоритмов :: SYL.ru

В этой статье будут рассмотрены примеры блок-схем, которые могут встретиться вам в учебниках по информатике и другой литературе. Блок-схема представляет собой алгоритм, по которому решается какая-либо задача, поставленная перед разработчиком. Сначала нужно ответить на вопрос, что такое алгоритм, как он представляется графически, а самое главное – как его решить, зная определенные параметры. Нужно сразу отметить, что алгоритмы бывают нескольких видов.

Что такое алгоритм?

Это слово ввел в обиход математик Мухаммед аль-Хорезми, который жил в период 763-850 года. Именно он является человеком, который создал правила выполнения арифметических действий (а их всего четыре). А вот ГОСТ от 1974 года, который гласит, что:

Алгоритм – это точное предписание, которое определяет вычислительный процесс. Причем имеется несколько переменных с заданными значениями, которые приводят расчеты к искомому результату.

Алгоритм позволяет четко указать исполнителю выполнять строгую последовательность действий, чтобы решить поставленную задачу и получить результат. Разработка алгоритма – это разбивание одной большой задачи на некую последовательность шагов. Причем разработчик алгоритма обязан знать все особенности и правила его составления.

Особенности алгоритма

Всего можно выделить восемь особенностей алгоритма (независимо от его вида):

  1. Присутствует функция ввода изначальных данных.
  2. Есть вывод некоего результата после завершения алгоритма. Нужно помнить, что алгоритм нужен для того, чтобы достичь определенной цели, а именно – получить результат, который имеет прямое отношение к исходным данным.
  3. У алгоритма должна быть структура дискретного типа. Он должен представляться последовательными шагами. Причем каждый следующий шаг может начаться только после завершения предыдущего.
  4. Алгоритм должен быть однозначным. Каждый шаг четко определяется и не допускает произвольной трактовки.
  5. Алгоритм должен быть конечным – необходимо, чтобы он выполнялся за строго определенное количество шагов.
  6. Алгоритм должен быть корректным – задавать исключительно верное решение поставленной задачи.
  7. Общность (или массовость) – он должен работать с различными исходными данными.
  8. Время, которое дается на решение алгоритма, должно быть минимальным. Это определяет эффективность решения поставленной задачи.

А теперь, зная, какие существуют блок-схемы алгоритмов, можно приступить к рассмотрению способов их записи. А их не очень много.

Словесная запись

Такая форма, как правило, применяется при описании порядка действий для человека: «Пойди туда, не знаю куда. Принеси то, не знаю что».

Конечно, это шуточная форма, но суть понятна. В качестве примера можно привести еще, например, привычную запись на стеклах автобусов:«При аварии выдернуть шнур, выдавить стекло».

Здесь четко ставится условие, при котором нужно выполнить два действия в строгой последовательности. Но это самые простые алгоритмы, существуют и более сложные. Иногда используются формулы, спецобозначения, но при обязательном условии – исполнитель должен все понимать.

Допускается изменять порядок действий, если необходимо вернуться, например, к предыдущей операции либо обойти какую-то команду при определенном условии. При этом команды желательно нумеровать и обязательно указывается команда, к которой происходит переход: «Закончив все манипуляции, повторяете пункты с 3 по 5».

Запись в графической форме

В этой записи участвуют элементы блок-схем. Все элементы стандартизированы, у каждой команды имеется определенная графическая запись. А конкретная команда должна записываться внутри каждого из блоков обычным языком или математическими формулами. Все блоки должны соединяться линиями – они показывают, какой именно порядок у выполняемых команд. Собственно, этот тип алгоритма более подходит для использования в программном коде, нежели словесный.

Запись на языках программирования

В том случае, если алгоритм необходим для того, чтобы задачу решала программа, установленная на ПК, то нужно его записывать специальным кодом. Для этого существует множество языков программирования. И алгоритм в этом случае называется программой.

Блок-схемы

Блок-схема – это представление алгоритма в графической форме. Все команды и действия представлены геометрическими фигурами (блоками). Внутри каждой фигуры вписывается вся информация о тех действиях, которые нужно выполнить. Связи изображены в виде обычных линий со стрелками (при необходимости).

Для оформления блок-схем алгоритмов имеется ГОСТ 19.701-90. Он описывает порядок и правила создания их в графической форме, а также основные методы решения. В этой статье приведены основные элементы блок-схем, которые используются при решении задач, например, по информатике. А теперь давайте рассмотрим правила построения.

Основные правила составления блок-схемы

Можно выделить такие особенности, которые должны быть у любой блок-схемы:

  1. Обязательно должно присутствовать два блока – «Начало» и «Конец». Причем в единичном экземпляре.
  2. От начального блока до конечного должны быть проведены линии связи.
  3. Из всех блоков, кроме конечного, должны выходить линии потока.
  4. Обязательно должна присутствовать нумерация всех блоков: сверху вниз, слева направо. Порядковый номер нужно проставлять в левом верхнем углу, делая разрыв начертания.
  5. Все блоки должны быть связаны друг с другом линиями. Именно они должны определять последовательность, с которой выполняются действия. Если поток движется снизу вверх или справа налево (другими словами, в обратном порядке), то обязательно рисуются стрелки.
  6. Линии делятся на выходящие и входящие. При этом нужно отметить, что одна линия является для одного блока выходящей, а для другого входящей.
  7. От начального блока в схеме линия потока только выходит, так как он является самым первым.
  8. А вот у конечного блока имеется только вход. Это наглядно показано на примерах блок-схем, которые имеются в статье.
  9. Чтобы проще было читать блок-схемы, входящие линии изображаются сверху, а исходящие снизу.
  10. Допускается наличие разрывов в линиях потока. Обязательно они помечаются специальными соединителями.
  11. Для облегчения блок-схемы разрешается всю информацию прописывать в комментариях.

Графические элементы блок-схем для решения алгоритмов представлены в таблице:

Линейный тип алгоритмов

Это самый простой вид, который состоит из определенной последовательности действий, они не зависят от того, какие данные вписаны изначально. Есть несколько команд, которые выполняются однократно и только после того, как будет сделана предшествующая. Линейная блок-схема выглядит таким образом:

Пример линейного алгоритма

Причем связи могут идти как сверху вниз, так и слева направо. Используется такая блок-схема для записи алгоритмов вычислений по простым формулам, у которых не имеется ограничений на значения переменных, входящих в формулы для расчета. Линейный алгоритм – это составная часть сложных процессов вычисления.

Разветвляющиеся алгоритмы

Блок-схемы, построенные по таким алгоритмам, являются более сложными, нежели линейные. Но суть не меняется. Разветвляющийся алгоритм – это процесс, в котором дальнейшее действие зависит от того, как выполняется условие и какое получается решение. Каждое направление действия – это ветвь.

Разновидности циклов для решения алгоритмов

На схемах изображаются блоки, которые называются «Решение». У него имеется два выхода, а внутри прописывается логическое условие. Именно от того, как оно будет выполнено, зависит дальнейшее движение по схеме алгоритма. Можно разделить разветвляющиеся алгоритмы на три группы:

  1. «Обход» – при этом одна из веток не имеет операторов. Другими словами, происходит обход нескольких действий другой ветки.
  2. «Разветвление» – каждая ветка имеет определенный набор выполняемых действий.
  3. «Множественный выбор» – это разветвление, в котором есть несколько веток и каждая содержит в себе определенный набор выполняемых действий. Причем есть одна особенность – выбор направления напрямую зависит от того, какие заданы значения выражений, входящих в алгоритм.

Это простые алгоритмы, которые решаются очень просто. Теперь давайте перейдем к более сложным.

Циклический алгоритм

Здесь все предельно понятно – циклическая блок-схема представляет алгоритм, в котором многократно повторяются однотипные вычисления. По определению, цикл – это определенная последовательность каких-либо действий, выполняемая многократно (более, чем один раз). И можно выделить несколько типов циклов:

  1. У которых известно число повторений действий (их еще называют циклами со счетчиком).
  2. У которых число повторений неизвестно – с постусловием и предусловием.

Независимо от того, какой тип цикла используется для решения алгоритма, у него обязательно должна присутствовать переменная, при помощи которой происходит выход. Именно она определяет количество повторений цикла. Рабочая часть (тело) цикла – это определенная последовательность действий, которая выполняется на каждом шаге. А теперь более детально рассмотрим все типы циклов, которые могут встретиться при составлении алгоритмов и решении задач по информатике.

Циклы со счетчиками

На рисунке изображена простая блок-схема, в которой имеется цикл со счетчиком. Такой тип алгоритмов показывает, что заранее известно количество повторений данного цикла. И это число фиксировано. При этом переменная, считающая число шагов (повторений), так и называется – счетчик. Иногда в учебниках можно встретить иные определения – параметр цикла, управляющая переменная.

Изображение цикла со счетчиком

Блок-схема очень наглядно иллюстрирует, как работает цикл со счетчиком. Прежде чем приступить к выполнению первого шага, нужно присвоить начальное значение счетчику – это может быть любое число, оно зависит от конкретного алгоритма. В том случае, когда конечное значение меньше величины счетчика, начнет выполняться определенная группа команд, которые составляют тело цикла.

После того, как тело будет выполнено, счетчик меняется на величину шага счетчика, обозначенную буквой h. В том случае, если значение, которое получится, будет меньше конечного, цикл будет продолжаться. И закончится он лишь в тогда, когда конечное значение будет меньше, чем счетчик цикла. Только в этом случае произойдет выполнение того действия, которое следует за циклом.

Как изображается счетчик цикла

Обычно в обозначениях блок-схем используется блок, который называется «Подготовка». В нем прописывается счетчик, а затем указываются такие данные: начальное и конечное значения, шаг изменения. На блок-схеме это параметры I н, Ik и h, соответственно. В том случае, когда h=1, величину шага не записывают. В остальных случаях делать это обязательно. Необходимо придерживаться простого правила – линия потока должна входить сверху. А линия потока, которая выходит снизу (или справа, в зависимости от конкретного алгоритма), должна показывать переход к последующему оператору.

Теперь вы полностью изучили описание блок-схемы, изображенной на рисунке. Можно перейти к дальнейшему изучению. Когда используется цикл со счетчиком, требуется соблюдать определенные условия:

  1. В теле не разрешается изменять (принудительно) значение счетчика.
  2. Запрещено передавать управление извне оператору тела. Другими словами, войти в цикл можно только из его начала.

Циклы с предусловием

Этот тип циклов применяется в тех случаях, когда количество повторений заранее неизвестно. Цикл с предусловием – это тип алгоритма, в котором непосредственно перед началом выполнения тела осуществляется проверка условия, при котором допускается переход к следующему действию. Обратите внимание на то, как изображаются элементы блок-схемы.

В том случае, когда условие выполняется (утверждение истинно), происходит переход к началу тела цикла. Непосредственно в нем изменяется значение хотя бы одной переменной, влияющей на значение поставленного условия. Если не придерживаться этого правила, получим «зацикливание». В том случае, если после следующей проверки условия выполнения тела цикла оказывается, что оно ложное, то происходит выход.

В блок-схемах алгоритмов допускается осуществлять проверку не истинности, а ложности начального условия. При этом из цикла произойдет выход только в том случае, если значение условия окажется истинным. Оба варианта правильные, их использование зависит от того, какой конкретно удобнее использовать для решения той или иной задачи. Такой тип цикла имеет одну особенность – тело может не выполниться в случае, когда условие ложно или истинно (в зависимости от варианта, который применяется для решения алгоритма).

Ниже приведена блок-схема, которая описывает все эти действия:

Изображение цикла с предусловием

Если внимательно присмотреться, то этот вид циклов чем-то похож на предыдущий. Самостоятельно построить блок-схему, описывающую этот цикл, мы сейчас и попробуем. Особенность заключается в том, что неизвестно заранее число повторений. А условие задается уже после того, как произошел выход из тела. Отсюда видно, что тело, независимо от решения, будет выполняться как минимум один раз. Для наглядности взгляните на блок-схему, описывающую выполнение условия и операторов:

Изображение цикла с постусловием

Ничего сложного в построении алгоритмов с циклами нет, достаточно в них только один раз разобраться. А теперь перейдем к более сложным конструкциям.

Сложные циклы

Сложные – это такие конструкции, внутри которых есть один или больше простых циклов. Иногда их называют вложенными. При этом те конструкции, которые охватывают иные циклы, называют «внешними». А те, которые входят в конструкцию внешних – внутренними. При выполнении каждого шага внешнего цикла происходит полная прокрутка внутреннего, как представлено на рисунке:

Пример сложного цикла

Вот и все, вы рассмотрели основные особенности построения блок-схем для решения алгоритмов, знаете принципы и правила. Теперь можно рассмотреть конкретные примеры блок-схем из жизни. Например, в психологии такие конструкции используются для того, чтобы человек решил какой-то вопрос:

Пример из жизни решения алгоритма

Или пример из биологии для решения поставленной задачи:

Второй пример решения алгоритма по блок-схеме

Решение задач с блок-схемами

А теперь рассмотрим примеры задач с блок-схемами, которые могут попасться в учебниках информатики. Например, задана блок-схема, по которой решается какой-то алгоритм:

Решение задачи по математике

При этом пользователь самостоятельно вводит значения переменных. Допустим, х=16, а у=2. Процесс выполнения такой:

  1. Производится ввод значений х и у.
  2. Выполняется операция преобразования: х=√16=4.
  3. Выполняется условие: у=у2=4.
  4. Производится вычисление: х=(х+1)=(4+1)=5.
  5. Дальше вычисляется следующая переменная: у=(у+х)=(5+4)=9.
  6. Выводится решение: у=9.

На этом примере блок-схемы по информатике хорошо видно, как происходит решение алгоритма. Нужно обратить внимание на то, что значения х и у задаются на начальном этапе и они могут быть любыми.

15 онлайн-сервисов для создания блок-схем

Любые данные, будь то бытовое планирование на месяц, техническая инструкция или план работы по проекту, должны быть понятными и систематизированными. Не всё можно представить в виде простого текстового описания, списка или рисунка. Поможет в визуализации блок-схема, называемая также флоучартом.

Создать блок-схемы, флоучарты и майндмэпы помогут и простые текстовые и графические редакторы. Но в ряде случаев гораздо удобнее воспользоваться онлайн-сервисами. Во-первых, не нужно засорять память устройства, во-вторых, онлайн-приложения позволяют работать не в одиночку, а командой.

Собрали 15 онлайн-сервисов для создания и редактирования блок-схем.

Самый популярный онлайн-сервис для создания блок-схем. Он бесплатный и обладает хорошим набором инструментов и функций, позволяющих создавать организационные диаграммы, блок-схемы (флоучарты), сетевые диаграммы, UML, принципиальные электросхемы. У сервиса есть 5 готовых шаблонов блок-схем. Понятный интерфейс, поддерживает виртуальные хранилища – Google Drive, OneDrive и DropBox, что даёт возможности нескольким пользователям совместно работать над проектом. Сохранить проект можно в форматах JPG, PNG, SVG, PDF, HTML, XML, можно импортировать файлы в VSDX, и сохранять в собственные форматы других сервисов – Lucidchart и Gliffy.

Для большинства пользователей набора его опций хватает. Тем, кому нужны более широкие возможности, стоит рассмотреть другие варианты.

Этот сервис ориентирован, прежде всего, на веб-разработчиков и дизайнеров, он позволяет проектировать каркасы сайтов и пользовательские потоки. Wireflow прост в управлении, имеет обширную библиотеку элементов, несколько вариантов шаблонов блок-схем. К сожалению, сохранить готовый результат можно только в JPG, что доставляет некоторые неудобства. Но это приложение бесплатно, и со своими задачами оно справляется.

Говоря о блок-схемах, нельзя не вспомнить про Visio. Этот продукт Microsoft создан специально для проработки блок-схем, организационных диаграмм, карт процессов. Кроме этого, с помощью него можно создавать планы зданий и помещений, схемы и инженерные проекты. Вы можете спросить, какое отношение он имеет к онлайн-сервисам. Сама по себе программа Visio – для ПК, но она предусматривает возможность совместной одновременной работы онлайн в Office 365. Блок-схемы в этой системе связаны с базовыми исходными данными таким образом, что обновляются при изменении этих самых данных.

Для тех, кого по каким-то причинам не устраивает Visio, есть вариант, являющийся полноценной его заменой в области создания диаграмм и флоучартов. В приложении есть множество элементов, шаблоны для создания блок-схем и диаграмм (впрочем, можно обойтись без них и создать схему с нуля), в платной версии их ещё больше. Интерфейс приложения интуитивно понятен и прост, с ним разберётся даже начинающий пользователь. Для работы необходим только выход в интернет, есть возможность командной работы (хотя и с ограничениями для бесплатных аккаунтов). Сервис поддерживает импорт файлов Visio (VSDX), Amazon Web Service (AWS) и Omnigraffle, а сохраняет результаты в JPG,PNG, SVG, PDF и Visio. Кроме того, есть приятная возможность сохранять промежуточные версии на облачном сервере.

Бесплатная версия Lucidchart функциональна, но если не хватает расширений – можно оплатить подписку. В их числе: больший объём виртуального хранилища, возможность создания неограниченного количества проектов, добавления ссылок на данные. Стоит платная версия от $5,95 до $20 в месяц.

Cacoo – похожий на Lucidchart сервис, но более специализированный под блок-схемы. Здесь нет лишнего, зато есть множество шаблонов, форм и стрелок на любой вкус. Приложение удобно в управлении, в нём очень хорошо реализованы возможности для командной работы – ведь именно для этого оно и задумывалось. Можно заниматься проектом в режиме реал-тайм, видеть, кто в данный момент работает. Есть чат для обсуждения.

Сервис платный. Стоимость месяца работы в зависимости от тарифа варьируется от $4,95 до $18. Первые 14 дней можно пользоваться бесплатно.

Когда речь заходит о Google Docs, то, наверное, уместнее будет спросить, что же НЕ может этот сервис. Блок-схемы тоже не стали исключениями – их можно создавать в Гугл Документах при помощи функции Google Drawings. Набор функций тут стандартный, управление простое, разобраться с ним легко. Так как сервисы Гугла связаны с Google Диском, то возможность командной работы подразумевается сама собой. Просто создайте проект и отправьте ссылку на него другим участникам, открыв доступ для редактирования. Сохранить результат можно как файл рисунка или SVG, а также опубликовать в сети.

Сервис бесплатный, однако есть ограничения – вам будет доступно всего 15 ГБ на Диске.

Нужно что-то попроще? Тогда Gliffy – это для вас. Приложение не может похвастаться огромным набором функций, но зато в нём есть много шаблонов, оно простое и быстрое. Работает в режиме офлайн. Командная работа поддерживается, вы можете обмениваться своими наработками с коллегами.

Однопользовательская версия стоит $7,99, для команды – $4,99 за каждого пользователя.

Необычный и уникальный сервис, где блок-схемы создаются при помощи текста. Вам не придётся перетаскивать блоки и стрелки, просто наберите текст, используя специальный синтаксис – ключевые слова, хештеги, маркировку. А программа сама построит графическую схему – флоучарт, диаграмму, карту разметки. Коллективная работа поддерживается, все данные сохраняются в облаке.

Сервис платный. Версия Essentials стоит $8, а Premium – от $14 в месяц.

Этот инструмент предназначен специально для MacOS и iOS. Его возможности не ограничиваются простым созданием и редактированием флоучартов, ещё сервис может работать с векторной графикой (например, преобразовывать линии в кривые Безье). Есть возможность вводить команды и редактировать данные с клавиатуры. Продвинутые пользователи могут автоматизировать работу сервиса с помощью JavaScript.

Тарифы сервиса бьют по карманцам – от $50 до $250. Первые 14 дней – бесплатно.

Аналог Visio, подходящий как для онлайн-использования, так и для установки на компьютер под управлением Windows и MacOS. Как и в продукте от Microsoft, здесь можно создавать простые блок-схемы, диаграммы, сложные поэтажные планы зданий. Как и во всех программах подобного типа, есть шаблоны, и здесь их немало – несколько десятков. Сервис обладает мощным функционалом и при этом он прост в управлении.

Стоимость использования сервиса – $15 в месяц.

Очень гибко настраиваемый сервис с сотнями шаблонов и тысячами примеров от самих пользователей. Диаграммы, графики, блок-схемы – здесь найдутся образцы для всего. Кроме прочего, многие элементы «умные» и сами подстраиваются под общий стиль блок-схемы или диаграммы, даже под цветовую гамму. Работать над проектом можно командой в реальном времени, есть возможность комментирования, просмотра истории изменений. Интеграция с Chrome и GSuite тоже является несомненным плюсом.

Работать с Creately можно не только через браузер, есть приложения на ПК и смартфон. Стоимость лицензии – $5 в месяц или $75 бессрочно с каждого пользователя. Но это того стоит.

А этот сервис создан специально для образовательных программ, чтобы, во-первых, преподносить информацию наглядно, а во-вторых, научить студентов структурировать её в блок-схемы (mind map). Помогут в создании схем шаблоны и образцы. Кроме того, можно искать в сети изображения и вставлять их в проект буквально за пару кликов. Есть возможность командной работы и просмотра истории изменений, добавления коротких видео и записи голосовых сообщений.

Сервис интегрирован с GSuite, Google Диском, Office 365, а также с системами управления обучением – Canvas, Blackboard, Schoology, Moodle.

Простой, понятный сервис для создания красивых блок-схем. Набор функций мало отличается от всех вышеперечисленных вариантов, однако Canva может похвастаться возможностью настройки внешнего вида. Фон страницы, шрифт и цвет текстов, добавление изображений – собственных или из огромной библиотеки. Есть даже встроенный фоторедактор. Разумеется, здесь есть и поддержка командной работы. Для работы с мобильных устройств есть приложения как для iOS, так и для Android. Сохранение проектов – в формат PDF.

Сервис бесплатен, но есть премиум-элементы (фото и векторные изображения), они стоят $1 за штуку.

Сервис для создания ментальных карт и диаграмм. У него неплохой функционал, хорошо реализованные возможности командной работы – поддержка мобильной версии, чат и комментирование. Можно добавлять ссылки, изображения и видео, вставлять созданные файлы в свой блог или сайт, просматривать историю изменений, создавать из проекта презентации и слайд-шоу, есть даже функция рисования. Сохранять можно в PNG, PDF, а также программу Word. Сервис интегрируется с приложениями Гугла.

Имеется бесплатный тариф с 3 проектами карт, но есть и платные версии – от $36 за полгода, с более широкими возможностями.

Бесплатный редактор схем и диаграмм со стандартным набором функций. У него есть возможность командной работы с настройками доступа, можно добавлять файлы и следить за историей. Но в приложении отсутствуют шаблоны, нет режима презентации и добавления эффектов. Кроме того, невозможно резервное копирование.

Элементы блок-схем

Введение

Составление блок-схемы, соответствующей всем требованиям ГОСТов, – небыстрый и кропотливый процесс. Если у вас возникли проблемы с проектированием блок-схемы или вы запутались в том, какой элемент блок-схемы нужно использовать в конкретном месте, то записывайтесь ко мне на репетиторский урок. На частном занятии вы сможете задать мне абсолютно любой вопрос, касающийся визуализации блок-схемы.

Ключевые элементы блок-схемы

Если вы новичок в мире информационных технологий и только-только начали изучать область построения блок-схем, то я рекомендую вам потратить 5 минут и познакомиться с тем, что такое блок-схема и зачем она нужна.

Что такое схема? Схема – графическая интерпретация некоторого термина, события, анализа, действия, в котором применяются различные элементы для отображения данных.

Что такое блок-схема? Блок-схема – один из видов обыкновенной схемы, описывающая алгоритмы, в которой дискретные шаги изображаются в виде блоков, представляющих собой геометрические фигуры, и эти блоки соединены между собой линиями, которые указывают направление последовательности выполнения алгоритма.

Существует популярный ГОСТ, который описывает требования и правила выполнения блок-схем: ГОСТ 19.701-90. Схемы алгоритмов, программ, данных и систем. Условные обозначения и правила выполнения.

Основные элементы, использующиеся при проектировании блок-схем

Название элемента

Графическое отображение

Функция

1

Терминатор или блок начало-конец

Обозначает начало или конец программы. Данный блок отделяет границы программы от внешней среды. Как правило, в данный элемент вписывают фразы «Начало», «Старт» или «Конец», «Финиш».

2

Блок команды, процесса, действия

Данный блок отвечает за выполнение одной или нескольких операций. Как правило, в данный элемент блок-схемы вписывают команды, которые меняют данные, значения переменных. Например, арифметическая операция над двумя переменными будет записана в данном блоке.

3

Блок логического условия

Напомню, что результатом логического условия всегда является одно из двух предопределенных значения: истина или ложь. Внутри данного элемента-ромба записывается логическое условие, а из вершин ромба выходят альтернативные ветви решения. Обязательно следует подписывать ветви словами «Да», «Нет», чтобы не вводить в заблуждение читателя блок-схемы.

4

Предопределенный процесс

Если ваша программа предусматривает наличие подпрограмм: процедур или функций, то вызов подпрограммы записывается внутри данного элемента.

5

Блок ввода-вывода данных

Отвечает за форму подачи данных, например, за пользовательский ввод данных с клавиатуры или за вывод данных на монитор персонального компьютера. Очень важно понимать, что данный элемент блок-схемы не определяет носителя данных.

6

Блок цикла со счетчиком

Отвечает за выполнение циклических команд цикла for. Внутри элемента записывается заголовок цикла со счетчиком, а операции тела цикла располагаются ниже элемента. При каждой итерации цикла программа возвращается к заголовку цикла, используя левую стрелку. Выход из цикла for осуществляется по правой стрелке.

7

Парный блок для циклов с пред- и постусловием

Данный блок состоит из двух частей. Операции тела цикла размещаются между ними. Заголовок цикла и изменения счетчика цикла записываются внутри верхнего или нижнего блока – в зависимости от архитектуры цикла.

8

Соединитель

Применяется для обрыва линии связи между элементами блок-схемы. Например, если вы строите масштабную блок-схему на листе формата А4, и она не помещается на один лист, то вам придется осуществить перенос блок-схемы на второй лист. В этом случае необходимо будет воспользоваться данным соединителем. Как правило, внутри окружности указываются уникальный идентификатор, который является натуральным числом.

 

Мы рассмотрели восемь базовых элементов блок-схемы, оперируя которыми вы сможете без труда реализовать абсолютно любую блок-схему, исходя из требований школьной или вузовской программы.

Если вы хотите углубить познания в области построения блок-схем или не до конца разобрались с каким-либо элементом блок-схемы, то записывайтесь ко мне на индивидуальный урок. На данном уроке мы детально разберем все ваши вопросы, а также проведем составление колоссального количества блок-схем различной степени сложности.

Отправить ответ

avatar
  Подписаться  
Уведомление о