Jpg что за формат: JPEG — Википедия – Что такое jpg формат, его характеристики и как с ним работать

Jpg что за формат: JPEG — Википедия – Что такое jpg формат, его характеристики и как с ним работать

admin 07.01.2018

Содержание

JPEG — Википедия

JPEG (произносится «джейпег»[1], англ. Joint Photographic Experts Group, по названию организации-разработчика) — один из популярных растровых графических форматов, применяемый для хранения фотографий и подобных им изображений. Файлы, содержащие данные JPEG, обычно имеют расширения (суффиксы) .jpg, .jfif, .jpe или .jpeg. Однако .jpg является самым популярным из них на всех платформах. MIME-тип — image/jpeg.

Фотография заката в формате JPEG с уменьшением степени сжатия слева направо

Алгоритм JPEG позволяет сжимать изображение как с потерями, так и без потерь (режим сжатия lossless JPEG). Поддерживаются изображения с линейным размером не более 65535 × 65535 пикселов.

В 2010 году с целью сохранения для потомков информации о популярных в начале XXI века цифровых форматах учёные из проекта PLANETS заложили инструкции по чтению формата JPEG в специальную капсулу, которую поместили в специальное хранилище в швейцарских Альпах[2][3].

Алгоритм JPEG наиболее эффективен для сжатия фотографий и картин, содержащих реалистичные сцены с плавными переходами яркости и цвета. Наибольшее распространение JPEG получил в цифровой фотографии и для хранения и передачи изображений с использованием Интернета.

Формат JPEG в режиме сжатия с потерями малопригоден для сжатия чертежей, текстовой и знаковой графики, где резкий контраст между соседними пикселами приводит к появлению заметных артефактов. Такие изображения целесообразно сохранять в форматах без потерь, таких как JPEG-LS, TIFF, GIF, PNG, либо использовать режим сжатия Lossless JPEG.

JPEG (как и другие форматы сжатия с потерями) не подходит для сжатия изображений при многоэтапной обработке, так как искажения в изображения будут вноситься каждый раз при сохранении промежуточных результатов обработки.

JPEG не должен использоваться и в тех случаях, когда недопустимы даже минимальные потери, например при сжатии астрономических или медицинских изображений. В таких случаях может быть рекомендован предусмотренный стандартом JPEG режим сжатия Lossless JPEG (который, однако, не поддерживается большинством популярных кодеков) или стандарт сжатия JPEG-LS.

При сжатии изображение преобразуется из цветового пространства RGB в YCbCr. Следует отметить, что стандарт JPEG (ISO/IEC 10918-1) никак не регламентирует выбор именно YCbCr, допуская и другие виды преобразования (например, с числом компонентов[4], отличным от трёх), и сжатие без преобразования (непосредственно в RGB), однако спецификация JFIF (JPEG File Interchange Format, предложенная в 1991 году специалистами компании C-Cube Microsystems, и ставшая в настоящее время стандартом де-факто) предполагает использование преобразования RGB->YCbCr.

После преобразования RGB->YCbCr для каналов изображения Cb и Cr, отвечающих за цвет, может выполняться «прореживание» (subsampling

[5]), которое заключается в том, что каждому блоку из 4 пикселей (2х2) яркостного канала Y ставятся в соответствие усреднённые значения Cb и Cr (схема прореживания «4:2:0»[6]). При этом для каждого блока 2х2 вместо 12 значений (4 Y, 4 Cb и 4 Cr) используется всего 6 (4 Y и по одному усреднённому Cb и Cr). Если к качеству восстановленного после сжатия изображения предъявляются повышенные требования, прореживание может выполняться лишь в каком-то одном направлении — по вертикали (схема «4:4:0») или по горизонтали («4:2:2»), или не выполняться вовсе («4:4:4»).

Пример изображения в формате jpg.

Стандарт допускает также прореживание с усреднением Cb и Cr не для блока 2х2, а для четырёх расположенных последовательно (по вертикали или по горизонтали) пикселей, то есть для блоков 1х4, 4х1 (схема «4:1:1»), а также 2х4 и 4х2 (схема «4:1:0»). Допускается также использование различных типов прореживания для Cb и Cr, но на практике такие схемы применяются исключительно редко.

Далее яркостный компонент Y и отвечающие за цвет компоненты Cb и Cr разбиваются на блоки 8х8 пикселей. Каждый такой блок подвергается дискретному косинусному преобразованию (ДКП). Полученные коэффициенты ДКП квантуются (для Y, Cb и Cr в общем случае используются разные матрицы квантования) и пакуются с использованием кодирования серий и кодов Хаффмана. Стандарт JPEG допускает также использование значительно более эффективного арифметического кодирования, однако из-за патентных ограничений (патент на описанный в стандарте JPEG арифметический QM-кодер принадлежит IBM) на практике оно используется редко. В популярную библиотеку libjpeg последних версий включена поддержка арифметического кодирования, но с просмотром сжатых с использованием этого метода изображений могут возникнуть проблемы, поскольку многие программы просмотра не поддерживают их декодирование.

Матрицы, используемые для квантования коэффициентов ДКП, хранятся в заголовочной части JPEG-файла. Обычно они строятся так, что высокочастотные коэффициенты подвергаются более сильному квантованию, чем низкочастотные. Это приводит к огрублению мелких деталей на изображении. Чем выше степень сжатия, тем более сильному квантованию подвергаются все коэффициенты.

При сохранении изображения в JPEG-файле указывается параметр качества, задаваемый в некоторых условных единицах, например, от 1 до 100 или от 1 до 10. Большее число обычно соответствует лучшему качеству (и большему размеру сжатого файла). Однако даже при использовании наивысшего качества (соответствующего матрице квантования, состоящей из одних только единиц) восстановленное изображение не будет в точности совпадать с исходным, что связано как с конечной точностью выполнения ДКП, так и с необходимостью округления значений Y, Cb, Cr и коэффициентов ДКП до ближайшего целого. Режим сжатия Lossless JPEG, не использующий ДКП, обеспечивает точное совпадение восстановленного и исходного изображений, однако его малая эффективность (коэффициент сжатия редко превышает 2) и отсутствие поддержки со стороны разработчиков программного обеспечения не способствовали популярности Lossless JPEG.

Стандарт JPEG предусматривает два основных способа представления кодируемых данных.

Наиболее распространённым, поддерживаемым большинством доступных кодеков, является последовательное (sequential JPEG) представление данных, предполагающее последовательный обход кодируемого изображения разрядностью 8 бит на компоненту (или 8 бит на пиксель для чёрно-белых полутоновых изображений) поблочно слева направо, сверху вниз. Над каждым кодируемым блоком изображения осуществляются описанные выше операции, а результаты кодирования помещаются в выходной поток в виде единственного «скана», то есть массива кодированных данных, соответствующего последовательно пройденному («просканированному») изображению. Основной или «базовый» (baseline) режим кодирования допускает только такое представление (и хаффмановское кодирование квантованных коэффициентов ДКП). Расширенный (extended) режим наряду с последовательным допускает также прогрессивное (progressive JPEG) представление данных, кодирование изображений разрядностью 12 бит на компоненту/пиксель (сжатие таких изображений спецификацией JFIF не поддерживается) и арифметическое кодирование квантованных коэффициентов ДКП.

В случае progressive JPEG сжатые данные записываются в выходной поток в виде набора сканов, каждый из которых описывает изображение полностью с всё большей степенью детализации. Это достигается либо путём записи в каждый скан не полного набора коэффициентов ДКП, а лишь какой-то их части: сначала — низкочастотных, в следующих сканах — высокочастотных (метод «spectral selection» то есть спектральных выборок), либо путём последовательного, от скана к скану, уточнения коэффициентов ДКП (метод «successive approximation», то есть последовательных приближений). Такое прогрессивное представление данных оказывается особенно полезным при передаче сжатых изображений с использованием низкоскоростных каналов связи, поскольку позволяет получить представление обо всём изображении уже после передачи незначительной части JPEG-файла.

Обе описанные схемы (и sequential, и progressive JPEG) базируются на ДКП и принципиально не позволяют получить восстановленное изображение абсолютно идентичным исходному. Однако стандарт допускает также сжатие, не использующее ДКП, а построенное на основе линейного предсказателя (lossless, то есть «без потерь», JPEG), гарантирующее полное, бит-в-бит, совпадение исходного и восстановленного изображений. При этом коэффициент сжатия для фотографических изображений редко достигает 2, но гарантированное отсутствие искажений в некоторых случаях оказывается востребованным. Заметно большие степени сжатия могут быть получены при использовании не имеющего, несмотря на сходство в названиях, непосредственного отношения к стандарту JPEG ISO/IEC 10918-1 (ITU T.81 Recommendation) метода сжатия JPEG-LS, описываемого стандартом ISO/IEC 14495-1 (ITU T.87 Recommendation).

Файл JPEG содержит последовательность маркеров, каждый из которых начинается с байта 0xFF, свидетельствующего о начале маркера, и байта-идентификатора. Некоторые маркеры состоят только из этой пары байтов, другие же содержат дополнительные данные, состоящие из двухбайтового поля с длиной информационной части маркера (включая длину этого поля, но за вычетом двух байтов начала маркера, то есть 0xFF и идентификатора) и собственно данных. Такая структура файла позволяет быстро отыскать маркер с необходимыми данными (например, с длиной строки, числом строк и числом цветовых компонентов сжатого изображения).

Основные маркеры JPEG[7]
Маркер Байты Длина Назначение Комментарии
SOI 0xFFD8 нет Начало изображения
SOF0 0xFFC0 переменный размер Начало фрейма (базовый, ДКП) Показывает, что изображение кодировалось в базовом режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения (двухбайтовые поля со смещением соответственно 5 и 7 относительно начала маркера), количество компонентов (байтовое поле со смещением 9 относительно начала маркера), число бит на компонент — строго 8 (байтовое поле со смещением 4 относительно начала маркера), а также соотношение компонентов (например, 4:2:0).
SOF1 0xFFC1 переменный размер Начало фрейма (расширенный, ДКП, код Хаффмана) Показывает, что изображение кодировалось в расширенном (extended) режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения, количество компонентов, число бит на компонент (8 или 12), а также соотношение компонентов (например, 4:2:0).
SOF2 0xFFC2 переменный размер Начало фрейма (прогрессивный, ДКП, код Хаффмана) Показывает, что изображение кодировалось в прогрессивном режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения, количество компонентов, число бит на компонент (8 или 12), а также соотношение компонентов (например, 4:2:0).
DHT 0xFFC4 переменный размер Содержит таблицы Хаффмана Задает одну или более таблиц Хаффмана.
DQT 0xFFDB переменный размер Содержит таблицы квантования Задает одну или более таблиц квантования.
DRI 0xFFDD 4 байта Указывает длину рестарт-интервала Задает интервал между маркерами RST n в макроблоках. При отсутствии DRI появление в потоке кодированных данных маркеров RSTn недопустимо и считается ошибкой. Если при кодировании маркеры RST n не применяются, маркер DRI либо не используется вовсе, либо интервал повторений в нём указывается равным 0.
SOS 0xFFDA
переменный размер
Начало сканирования Начало первого или очередного скана изображения с направлением обхода слева направо сверху вниз. Если использовался базовый режим кодирования, используется один скан. При использовании прогрессивных режимов используется несколько сканов. Маркер SOS является разделяющим между информативной (заголовком) и закодированной (собственно сжатыми данными) частями изображения.
RSTn 0xFFDn нет Перезапуск Маркеры перезапуска используются для сегментирования кодированных энтропийным кодером данных. В каждом сегменте данные декодируются независимо, что позволяет распараллелить процедуру декодирования. При повреждении кодированных данных в процессе передачи или хранения JPEG-файла использование маркеров перезапуска позволяет ограничить потери (макроблоки из неповреждённых сегментов будут восстановлены правильно). Вставляется в каждом r-м макроблоке, где r — интервал перезапуска DRI маркера. Не используется при отсутствии DRI маркера. n, младшие 3 бита маркера кода, циклы от 0 до 7.
APPn 0xFFEn переменный размер Задаётся приложением Например, в EXIF JPEG-файла используется маркер APP1 для хранения метаданных, расположенных в структуре, основанной на TIFF.
COM 0xFFFE переменный размер Комментарий Содержит текст комментария.
EOI 0xFFD9 нет Конец закодированной части изображения.

К недостаткам сжатия по стандарту JPEG следует отнести появление на восстановленных изображениях при высоких степенях сжатия характерных артефактов: изображение рассыпается на блоки размером 8×8 пикселей (этот эффект особенно заметен на областях изображения с плавными изменениями яркости), в областях с высокой пространственной частотой (например, на контрастных контурах и границах изображения) возникают артефакты в виде шумовых ореолов. Следует отметить, что стандарт JPEG (ISO/IEC 10918-1, Annex K, п. K.8) предусматривает использование специальных фильтров для подавления блоковых артефактов, но на практике подобные фильтры, несмотря на их высокую эффективность, практически не используются.

Однако, несмотря на недостатки, JPEG получил очень широкое распространение из-за достаточно высокой (относительно существовавших во время его появления альтернатив) степени сжатия, поддержке сжатия полноцветных изображений и относительно невысокой вычислительной сложности.

Для ускорения процесса сжатия по стандарту JPEG традиционно используется распараллеливание вычислений, в частности — при вычислении ДКП. Исторически одна из первых попыток ускорить процесс сжатия с использованием такого подхода описана в опубликованной в 1993 году статье Касперовича и Бабкина[8], в которой предлагалась оригинальная аппроксимация ДКП, делающая возможным эффективное распараллеливание вычислений с использованием 32-разрядных регистров общего назначения процессоров Intel 80386. Появившиеся позже более производительные вычислительные схемы использовали SIMD-расширения набора инструкций процессоров архитектуры x86. Значительно лучших результатов позволяют добиться схемы, использующие вычислительные возможности графических ускорителей (технологии NVIDIA CUDA и AMD FireStream) для организации параллельных вычислений не только ДКП, но и других этапов сжатия JPEG (преобразование цветовых пространств, run-level, статистическое кодирование и т. п.), причём для каждого блока 8х8 кодируемого или декодируемого изображения. В статье[9] была представлена реализация распараллеливания всех стадий алгоритма JPEG по технологии CUDA, что значительно повысило скорость сжатия и декодирования по стандарту JPEG.

Как устроен формат JPEG / Habr

Изображения формата JPEG встречаются повсюду в нашей цифровой жизни, но за этим покровом осведомлённости скрываются алгоритмы, устраняющие детали, не воспринимаемые человеческим глазом. В итоге получается высочайшее визуальное качество при наименьшем размере файла – но как конкретно всё это работает? Давайте посмотрим, чего именно не видят наши глаза!

Легко принять, как само собой разумеющееся, возможность отправить фотку другу, и не волноваться по поводу того, какое устройство, браузер или операционную систему он использует – однако так было не всегда. К началу 1980-х компьютеры умели хранить и показывать цифровые изображения, однако по поводу наилучшего способа для этого существовало множество конкурирующих идей. Нельзя было просто отправить изображение с одного компьютера на другой и надеяться, что всё заработает.

Для решения этой проблемы в 1986 году был собран комитет экспертов со всего мира под названием «Объединённая группа экспертов по фотографии» (Joint Photographic Experts Group, JPEG), основанный в рамках совместной работы Международной организации по стандартизации (ISO) и Международной электротехнической комиссии (IEC) – двух международных организаций по стандартизации, штаб-квартира которых расположена в Женеве (Швейцария).

Группа людей под названием JPEG создала стандарт сжатия цифровых изображений JPEG в 1992 году. Любой человек, использовавший интернет, вероятно, встречался с изображениями в кодировке JPEG. Это самый распространённый способ кодирования, отправки и хранения изображений. От веб-страниц до емейла и соцсетей, JPEG используется миллиарды раз в день – практически каждый раз, когда мы смотрим изображение онлайн или отправляем его. Без JPEG веб был бы менее ярким, более медленным, и, вероятно, в нём было бы меньше фоток котиков!

Эта статья – о том, как декодировать JPEG изображение. Иначе говоря, о том, что требуется для преобразования сжатых данных, хранящихся на компьютере, в изображение, появляющееся на экране. Об этом стоит знать не только потому, что это важно для понимания технологии, которую мы используем ежедневно, но и потому, что раскрывая уровни сжатия, мы лучше узнаём восприятие и зрение, а также то, к каким деталям наши глаза восприимчивей всего.

Кроме того, играться с изображениями таким способом очень интересно.

Заглядывая внутрь JPEG


На компьютере всё хранится в виде последовательности двоичных чисел. Обычно эти биты, нули и единицы, группируются по восемь, составляя байты. Когда вы открываете JPEG изображение на компьютере, что-то (браузер, операционка, ещё что-то) должно декодировать байты, восстановив изначальное изображение в виде списка цветов, которые можно показать.

Если вы скачаете эту умильную фотографию кота и откроете её в текстовом редакторе, вы увидите кучу бессвязных символов.


Здесь я использую Notepad++ для изучения содержимого файла, поскольку обычные текстовые редакторы, типа Notepad из Windows, испортят двоичный файл после сохранения, и он перестанет удовлетворять формату JPEG.

Открывая изображение в текстовом редакторе, вы сбиваете компьютер с толку, точно так же, как вы сбиваете с толку свой мозг, когда потрёте глаза и начинаете видеть цветные пятна!

Эти пятна, которые вы видите, известны, как фосфены, и не являются результатом воздействия светового стимула или галлюцинациями, порождёнными разумом. Они возникают, потому что ваш мозг считает, что любые электрические сигналы в глазных нервах передают информацию о свете. Мозгу необходимо делать такие предположения, поскольку никак нельзя узнать, является ли сигнал звуком, видением или чем-то ещё. Все нервы в теле передают абсолютно одинаковые электрические импульсы. Давя на глаза, вы отправляете сигналы, не являющиеся зрительными, но активирующие рецепторы глаза, что ваш мозг интерпретирует – в данном случае, неверно – как нечто зрительное. Вы буквально способны видеть давление!

Забавно думать о том, насколько компьютеры похожи на мозг, однако это также является полезной аналогией, иллюстрирующей, насколько сильно значение данных – передаваемых по телу нервами, или хранящихся на компьютере – зависит от их интерпретации. Все двоичные данные состоят из нулей и единиц, базовых компонентов, способных передавать информацию любого вида. Ваш компьютер часто догадывается, как интерпретировать их при помощи подсказок, например, расширений файлов. А сейчас мы заставляем его интерпретировать их как текст, поскольку именно этого ожидает текстовый редактор.

Чтобы понять, как декодировать JPEG, нам нужно увидеть сами изначальные сигналы – двоичные данные. Это можно сделать при помощи шестнадцатеричного редактора, или же прямо на веб-странице оригинала статьи! Там есть изображение, рядом с которым в текстовом поле приведены все его байты (кроме заголовка), представленные в десятичном виде. Вы можете менять их, и скрипт перекодирует и выдаст новое изображение на лету.

Можно узнать многое, просто играясь с этим редактором. К примеру, можете ли вы сказать, в каком порядке хранятся пиксели?

В этом примере странно то, что изменение некоторых чисел вообще не влияет на изображение, а, например, если заменить число 17 на 0 в первой строке, то фотка полностью испортится!

Другие изменения, например, замена 7 на строке 1988 на число 254 изменяет цвет, но только последующих пикселей.

Возможно, наиболее странным будет то, что некоторые числа меняют не только цвет, но и форму изображения. Измените 70 в строке 12 на 2 и посмотрите на верхний ряд изображения, чтобы увидеть, что я имею в виду.

И вне зависимости от того, какое JPEG изображение вы используете, вы всегда будете находить эти загадочные шахматные последовательности при редактировании байтов.

Играясь с редактором, тяжело понять, как воссоздаётся фотка из этих байтов, поскольку JPEG сжатие состоит из трёх различных технологий, применяющихся последовательно по уровням. Мы изучим каждую из них отдельно, чтобы раскрыть наблюдаемое нами загадочное поведение.

Три уровня JPEG сжатия:

  1. Цветовая субдискретизация.
  2. Дискретное косинусное преобразование и дискретизация.
  3. Кодирование длин серий, дельта и Хаффмана

Дабы вы могли представить себе масштабы сжатия, обратите внимание, что изображение, приведённое выше, представляет 79 819 чисел, то есть, около 79 Кб. Если бы мы хранили его без сжатия, для каждого пикселя потребовалось бы по три числа – для красной, зелёной и синей составляющей. Это составило бы 917 700 чисел, или ок. 917 Кб. В результате JPEG сжатия итоговый файл уменьшился больше чем в 10 раз!

На самом деле, это изображение можно сжать гораздо сильнее. Снизу приведены два изображения рядом – фотка справа была ужата до 16 Кб, то есть в 57 раз меньше, чем несжатая версия!

Если присмотреться, будет видно, что эти изображения не идентичны. Оба они – картинки с JPEG сжатием, однако правая гораздо меньше по объёму. Также она выглядит чуть похуже (посмотрите на квадраты цветов фона). Поэтому JPEG ещё называют сжатием с потерями; в процессе сжатия изображение меняется и теряет некоторые детали.

1. Цветовая субдискретизация


Вот изображение с применением только первого уровня сжатия.


(Интерактивная версия – в оригинале статьи). Удаление одного числа рушит все цвета. Однако если удалить ровно шесть чисел, это практически не влияет на изображение.

Теперь числа чуть проще расшифровать. Это почти что простой список цветов, у которого каждый байт изменяет ровно один пиксель, но при этом он уже в два раза меньше несжатого изображения (которое занимало бы ок. 300 Кб в таком уменьшенном размере). Догадаетесь, почему?

Можно видеть, что эти числа не обозначают стандартные красную, зелёную и синюю компоненты, поскольку если заменить все числа нулями, мы получим зелёное изображение (а не белое).

Это потому, что эти байты обозначают Y (яркость),

Cb (относительная голубизна),

и Cr (относительная краснота) картинки.

Почему не использовать RGB? Ведь именно так работает большинство современных экранов. Ваш монитор может демонстрировать любой цвет, включая красный, зелёный и синий цвета с разной интенсивностью для каждого пикселя. Белый получается включением всех трёх на полную яркость, а чёрный – их отключением.

Это также очень похоже на работу человеческого глаза. Цветовые рецепторы наших глаз называются «колбочки», и делятся на три типа, каждый из которых более чувствителен либо к красному, либо к зелёному, либо к синему цветам [колбочки S-типа чувствительны в фиолетово-синей (S от англ. Short — коротковолновый спектр), M-типа — в зелено-желтой (M от англ. Medium — средневолновый), и L-типа — в желто-красной (L от англ. Long — длинноволновый) частях спектра. Наличие этих трёх видов колбочек (и палочек, чувствительных в изумрудно-зелёной части спектра) даёт человеку цветное зрение. / прим. перев.]. Палочки, другой тип фоторецепторов в наших глазах, способны улавливать только изменения в яркости, однако они гораздо более чувствительные. В наших глазах есть около 120 млн палочек и всего 6 млн колбочек.

Поэтому наши глаза гораздо лучше замечают изменения в яркости, чем изменения в цвете. Если отделить цвет от яркости, можно убрать немного цвета, и никто ничего не заметит. Цветовая субдискретизация – это процесс представления цветовых компонентов изображения в меньшем разрешении по сравнению с компонентами яркости. В примере выше у каждого пикселя ровно один компонент Y, а у каждой отдельной группы из четырёх пикселей есть ровно одна компонента Cb и одна Cr. Поэтому изображение содержит в четыре раза меньше цветовой информации, чем было у оригинала.

Цветовое пространство YCbCr используется не только в JPEG. Его изначально придумали в 1938 году для телепередач. Не у всех есть цветной телевизор, поэтому разделение цвета и яркости позволило всем получать один и тот же сигнал, а телевизоры без цвета просто использовали только компонент яркости.

Поэтому удаление одного числа из редактора полностью рушит все цвета. Компоненты хранятся в виде Y Y Y Y Cb Cr (на самом деле, не обязательно в таком порядке – порядок хранения задаётся в заголовке файла). Удаление первого числа приведёт к тому, что первое значение Cb будет воспринято, как Y, Cr как Cb, и в целом получится эффект домино, переключающий все цвета картинки.

Спецификация JPEG не обязывает вас использовать YCbCr. Но в большинстве файлов она используются, поскольку она даёт изображения лучшего качества после субдискретизации по сравнению с RGB. Но вам не обязательно верить мне на слово. Посмотрите сами в табличке ниже, как будет выглядеть субдискретизация каждого отдельного компонента как в RGB, так и в YCbCr.


(Интерактивная версия – в оригинале статьи).

Удаление синего не так заметно, как красного или зелёного. Всё потому, что из шести миллионов колбочек в ваших глазах около 64% чувствительны к красному, 32% к зелёному и 2% к синему.

Субдискретизация компонента Y (слева внизу) видна лучше всего. Заметно даже небольшое изменение.

Преобразование изображения из RGB в YCbCr не уменьшает размер файла, но облегчает поиск менее заметных деталей, которые можно удалить. Сжатие с потерями происходит на втором этапе. В её основе лежит идея представления данных в более сжимаемом виде.

2. Дискретное косинусное преобразование и дискретизация


Этот уровень сжатия по большей части и определяет суть JPEG. После преобразования цветов в YCbCr компоненты сжимаются по отдельности, поэтому далее мы можем сконцентрироваться только на компоненте Y. И вот как выглядят байты компонента Y после применения этого уровня.


(Интерактивная версия – в оригинале статьи). В интерактивной версии клик на пикселе прокручивает редактор на строчку, которая его обозначает. Попробуйте поудалять числа с конца или добавить несколько нулей к определённому числу.

На первый взгляд, выглядит, как очень плохое сжатие. В изображении 100 000 пикселей, и для обозначения их яркости (Y-компоненты) требуется 102 400 чисел — это хуже, чем если вообще ничего не сжимать!

Однако обратите внимание на то, что большинство этих чисел равны нулю. Более того, все эти нули в конце строк можно удалять, не меняя изображение. Остаётся порядка 26 000 чисел, а это уже почти в 4 раза меньше!

На этом уровне находится секрет шахматных узоров. В отличие от других эффектов, которые мы видели, появление этих узоров не является глюком. Они – строительные блоки всего изображения. В каждой строчке редактора содержится ровно 64 числа, коэффициенты дискретного косинусного преобразования (DCT), соответствующие интенсивностям 64-х уникальных узоров.

Эти узоры формируются на основе графика косинуса. Вот, как выглядят некоторые из них:


8 из 64 коэффициентов

Ниже – изображение, демонстрирующее все 64 узора.


(Интерактивная версия – в оригинале статьи).

Эти узоры имеют особое значение, поскольку они формируют базис изображений размера 8х8. Если вы незнакомы с линейной алгеброй, то это означает, что любое изображение размера 8х8 можно получить из этих 64-х узоров. DCT – это процесс разбиения изображений на блоки 8х8 и преобразования каждого блока в комбинацию из этих 64 коэффициентов.

То, что любое изображение можно составить из 64 определённых узоров, кажется волшебством. Однако это то же самое, что сказать, что любое место на Земле можно описать двумя числами – широтой и долготой [с указанием полушарий / прим. перев.]. Мы часто считаем поверхность Земли двумерной, поэтому нам требуются всего два числа. Изображение 8х8 имеет 64 измерения, поэтому нам требуются 64 числа.

Пока непонятно, как это помогает нам в смысле сжатия. Если нам нужно 64 числа для представления изображения 8х8, почему этот способ будет лучше, чем просто хранить 64 компоненты яркости? Мы делаем это по той же причине, по которой мы превратили три числа RGB в три числа YCbCr: это позволяет нам удалить незаметные детали.

Сложно увидеть, какие именно детали удаляются на этом этапе, поскольку JPEG применяет DCT к блокам 8х8. Однако никто не запрещает нам применить его к целой картинке. Вот, как выглядит DCT по компоненте Y в применении к целой картинке:

С конца можно удалить более 60 000 чисел практически без заметных изменений на фотке.

Однако отметьте, что если мы обнулим первые пять чисел, разница будет очевидной.

Числа в начале обозначают изменения низкой частоты в изображении, и наши глаза улавливают их лучше всего. Числа ближе к концу обозначают изменения высоких частот, которые сложнее заметить. Чтобы «увидеть то, что не видно глазом», мы можем изолировать эти детали высокой частоты, обнулив первые 5000 чисел.

Мы видим все области изображения, в которых происходит наибольшее изменение от пикселя к пикселю. Выделяются глаза кота, его усы, махровое одеяло и тени в нижнем левом углу. Можно пойти и дальше, обнулив первые 10 000 чисел:

20 000:

40 000:

60 000:

Эти высокочастотные детали JPEG и удаляет на этапе сжатия. Преобразование цветов в коэффициенты DCT не несёт потерь. Потери образуются на шаге дискретизации, где удаляются величины высокой частоты или близкие к нулю. Когда вы понижаете качество сохранения JPEG, программа увеличивает порог количества удаляемых значений, что даёт уменьшение размера файла, но делает картинку более пикселизированной. Поэтому изображение в первом разделе, которое было в 57 раз меньше, так выглядело. Каждый блок 8х8 представлялся гораздо меньшим количеством коэффициентов DCT по сравнению с более качественной версией.

Можно сделать такой крутой эффект, как постепенная потоковая передача изображений. Можно вывести размытую картинку, которая становится всё более детализированной по мере скачивания всё большего количества коэффициентов.

Вот, просто для интереса, что получится при использовании всего 24 000 чисел:

Или всего 5000:

Очень размыто, но как будто узнаваемо!

3. Кодирование длин серий, дельта и Хаффмана


Пока что все этапы сжатия шли с потерями. Последний этап, наоборот, идёт без потерь. Он не удаляет информацию, однако значительно уменьшает размер файла.

Как можно сжать что-либо, не отбрасывая информацию? Представьте, как бы мы описали простой чёрный прямоугольник 700 х 437.

JPEG использует для этого 5000 чисел, но можно достичь гораздо лучшего результата. Можете представить себе схему кодирования, которая бы описывала подобное изображение как можно меньшим количеством байт?

Минимальная схема, которую смог придумать я, использует четыре: три для обозначения цвета, и четвёртый – сколько пикселей имеет такой цвет. Идея представления повторяющихся значений таким сжатым способом называется кодирование длин серий. Она не имеет потерь, поскольку мы можем восстановить закодированные данные в первозданном виде.

Размер файла JPEG с чёрным прямоугольником гораздо больше 4 байт – вспомните, что на уровне DCT сжатие применяется к блокам 8х8 пикселей. Поэтому как минимум нам нужен один коэффициент DCT на каждые 64 пикселя. Один нам нужен потому, что вместо того, чтобы хранить один DCT-коэффициент, за которым идёт 63 нуля, кодирование длин серий позволяет нам хранить одно число и обозначить, что «все остальные – нули».

Дельта-кодирование – это техника, при которой каждый байт содержит отличие от какого-то значения, а не абсолютную величину. Поэтому редактирование определённых байтов изменяет цвет всех остальных пикселей. К примеру, вместо того, чтобы хранить

12 13 14 14 14 13 13 14

Мы могли бы начать с 12, а потом просто обозначать, сколько надо прибавить или отнять, чтобы получить следующее число. И эта последовательность в дельта-кодировании приобретает вид:

12 1 1 0 0 -1 0 1

Преобразованные данные не получаются меньше исходных, но сжимать их уже легче. Применение дельта-кодирования перед кодированием длин серий может сильно помочь, оставаясь при этом сжатием без потерь.

Дельта-кодирование – одна из немногих техник, применяемых вне блоков 8х8. Из 64 коэффициентов DCT один – просто постоянная волновая функция (сплошной цвет). Он представляет среднюю яркость каждого блока для компонент яркости, или среднюю голубизну для компонентов Cb, и так далее. Первое значение каждого DCT-блока называется DC-значением, и каждое DC-значение проходит дельта-кодирование по отношению к предыдущим. Поэтому изменение яркости первого блока повлияет на все блоки.

Остаётся последняя загадка: как изменение единственного числа полностью портит всю картинку? Пока таких свойств у уровней сжатия не было. Ответ лежит в заголовке JPEG. Первые 500 байт содержат метаданные об изображении – ширину, высоту, и проч., и пока мы с ними не работали.

Без заголовка практически невозможно (ну, или очень сложно) декодировать JPEG. Это будет выглядеть так, будто я пытаюсь описать вам картину, и начинаю изобретать слова для того, чтобы передать своё впечатление. Описание будет, вероятно, весьма сжатым, поскольку я могу изобретать слова именно с тем значением, которое я хочу передать, однако для всех остальных они не будут иметь смысла.

Звучит глупо, но именно так это и происходит. Каждое изображение JPEG сжимается с кодами, специфичными именно для него. Словарь кодов хранится в заголовке. Эта техника называется «код Хаффмана», а словарь – таблицей Хаффмана. В заголовке таблица отмечена двумя байтами – 255 и потом 196. У каждого цветового компонента может быть своя таблица.

Изменения таблиц радикально повлияют на любое изображение. Хороший пример – поменять на 15-й строке 1 на 12.

Это происходит потому, что в таблицах указывается, как нужно читать отдельные биты. Пока что мы работали только с двоичными числами в десятичном виде. Но это скрывает от нас тот факт, что если вы хотите хранить число 1 в байте, то оно будет выглядеть, как 00000001, поскольку в каждом байте должно быть ровно восемь бит, даже если нужен из них всего один.

Потенциально это большая трата места, если у вас есть много мелких чисел. Код Хаффмана – это техника, позволяющая нам ослабить это требование, по которому каждое число должно занимать восемь бит. Это значит, что если вы видите два байта:

234 115

То, в зависимости от таблицы Хаффмана, это могут быть три числа. Чтобы их извлечь, вам надо сначала разбить их на отдельные биты:

11101010 01110011

Затем обращаемся к таблице, чтобы понять, как их группировать. К примеру, это могут быть первые шесть битов, (111010), или 58 в десятичной системе, за которыми идут пять битов (10011), или 19, и наконец последние четыре бита (0011), или 3.

Поэтому очень сложно разобраться в байтах на этом этапе сжатия. Байты не представляют то, что кажется. Не буду углубляться в детали работы с таблицей в данной статье, но материалов по этому вопросу в сети достаточно.

Один из интересных трюков, которые можно проделать, зная это – отделить заголовок от JPEG и хранить его отдельно. По сути, получится, что файл сможете прочесть только вы. Facebook проделывает это, чтобы ещё сильнее уменьшать файлы.

Что ещё можно сделать – совсем немного изменить таблицу Хаффмана. Для других это будет выглядеть, как испорченная картинка. И только вы будете знать волшебный вариант её исправления.

Подведём итоги: так что же нужно для декодирования JPEG? Необходимо:

  1. Извлечь таблицу (таблицы) Хаффмана из заголовка и декодировать биты.
  2. Извлечь коэффициенты дискретного косинусного преобразования для каждого компонента цвета и яркости для каждого блока 8х8, проведя обратные преобразования кодирования длин серий и дельты.
  3. Скомбинировать косинусы на основе коэффициентов, чтобы получить значения пикселей для каждого блока 8х8.
  4. Масштабировать компоненты цветов, если проводилась субдискретизация (эта информация есть в заголовке).
  5. Преобразовать полученные значения YCbCr для каждого пикселя в RGB.
  6. Вывести изображение на экран!

Серьёзная работа для простого просмотра фотки с котиком! Однако, что мне в этом нравится – видно, насколько технология JPEG человекоцентрична. Она основана на особенностях нашего восприятия, позволяющих достичь гораздо лучшего сжатия, чем обычные технологии. И теперь, понимая, как работает JPEG, можно представить, как эти технологии можно перенести в другие области. К примеру, дельта-кодирование в видео может дать серьёзное уменьшение размера файла, поскольку там часто есть целые области, не меняющиеся от кадра к кадру (к примеру, фон).

Код, использованный в статье, открыт, и содержит инструкции по замене картинок на свои собственные.

Файлы JPG/JPEG в Windows – как открыть, изменить и конвертировать

Файл с расширением JPG или JPEG является файлом изображения. Причина, по которой некоторые файлы JPEG-изображений используют JPG-расширение, а другие – JPEG, объясняется ниже, но независимо от расширения, оба файла имеют один формат.

JPG файлы широко используются, потому что их алгоритм сжатия значительно уменьшает размер файла, что делает его идеальным для совместного использования, хранения и отображения на веб-сайтах. Однако, это сжатие JPEG также снижает качество изображения, что может быть заметно, если оно сильно сжато.

Некоторые файлы JPEG-изображений используют .Jpe расширение, но это не очень распространено. JFIF – это файлы формата обмена файлами JPEG, которые также используют сжатие JPEG, но не так популярны, как файлы JPG.

Как открыть файл JPG/JPEG

JPG-файлы поддерживаются всеми просмотрщиками и редакторами изображений. Это самый распространенный формат изображения.

Вы можете открыть файлы JPG с помощью веб-браузера, например Chrome или Edge (перетащите локальные файлы JPG в окно браузера) или встроенные программы Microsoft, такие как Paint, Microsoft Windows Photos и Microsoft Windows Photo Viewer. Если вы находитесь на компьютере Mac, Apple Preview и Apple Photos могут открыть файл JPG.

Adobe Photoshop, GIMP и практически любая другая программа, которая просматривает изображения, в том числе онлайн-сервисы, такие как Google Drive, также поддерживают JPG-файлы.

Мобильные устройства также поддерживают открытие файлов JPG, что означает, что вы можете просматривать их в своей электронной почте и через текстовые сообщения без необходимости устанавливать дополнительное приложение для просмотра JPG.

Некоторые программы не распознают изображение как файл JPEG Image, если только оно не имеет соответствующего расширения файла, который ищет программа. Например, некоторые редакторы изображений и средства просмотра будут открывать только .JPG файлы и не поймут, что .JPEG – то же самое. В этих случаях вы можете просто переименовать файл, чтобы получить расширение файла, которое понимает программа.

Некоторые форматы файлов используют расширения файлов, которые выглядят как .JPG файлы, но на самом деле не связаны. Примеры включают JPR (JBuilder Project или Fugawi Projection), JPS (Stereo JPEG Image или Akeeba Backup Archive) и JPGW (JPEG World).

Как конвертировать файл JPG / JPEG

Существует два основных способа конвертировать файлы JPG. Вы можете использовать вьювер/редактор изображений, чтобы сохранить его в новом формате (при условии, что функция поддерживается) или добавить файл JPG в программу преобразования изображений.

Например, FileZigZag является онлайн конвертером JPG, который может сохранить файл в ряде других форматов, включая PNG, TIF / TIFF, GIF, BMP, DPX, TGA, PCX и YUV.

Вы даже можете конвертировать файлы JPG в формат MS Word, такой как DOCX или DOC с Zamzar, который похож на FileZigZag в том, что он преобразует файл JPG в режиме онлайн. Он также сохраняет JPG в ICO, PS, PDF и WEBP, среди других форматов.

Если вы просто хотите вставить файл JPG в документ Word, вам не нужно конвертировать файл в формат MS Word. Вместо этого используйте встроенное меню Word: Вставить → Картинка, чтобы подключить JPG непосредственно к документу, даже если у вас уже есть текст.

Откройте файл JPG в Microsoft Paint и используйте меню Файл → Сохранить как, чтобы преобразовать его в BMP, DIB, PNG, TIFF и т.д. Другие средства просмотра и редакторы JPG, упомянутые выше, поддерживают аналогичные параметры меню и форматы выходных файлов.

Использование веб-сервиса Convertio является одним из способов преобразования JPG в EPS, если вы хотите, чтобы файл изображения был в этом формате. Если это не работает, вы можете попробовать AConvert.com.

Несмотря на название, веб-сайт Online PNG to SVG Converter также умеет преобразовывать файлы JPG в формат изображения SVG (vector).

Если у вас есть файл PDF и вы хотите сделать из него JPG/JPEG, попробуйте PDF.io

Чем отличается JPG от JPEG

Интересно, какая разница между JPEG и JPG? Форматы файлов идентичны, но в одном из расширений есть дополнительная буква. На самом деле… это единственная разница.

JPG и JPEG представляют собой формат изображения, поддерживаемый совместной группой экспертов по фотографии, и имеют одинаковое значение. Причина различных расширений файлов связана с ранними версиями Windows, не принимавших «длинное» расширение.

Ситуация похожа на HTM и HTML, когда формат JPEG был впервые введен, официальным расширением файла был JPEG (с четырьмя буквами). Однако, Windows в то время требовала, чтобы все расширения файлов не превышали трёх букв, вот почему .JPG использовался для того же самого формата. Компьютеры Mac, однако, уже тогда не имели такого ограничения.

Произошло то, что оба расширения файлов использовались в обеих системах, а затем Windows изменила свои требования, чтобы принять более длинные расширения файлов, но JPG всё ещё используется. Поэтому файлы JPG и JPEG распространяются и продолжают создаваться.

В то время как оба расширения файлов существуют, форматы точно такие же, и любой из них может быть переименован в другой без потери качества и функциональности.

JPEG — это… Что такое JPEG?

JPEG (произносится «джейпег»[1], англ. Joint Photographic Experts Group, по названию организации-разработчика) — один из популярных графических форматов, применяемый для хранения фотоизображений и подобных им изображений. Файлы, содержащие данные JPEG, обычно имеют расширения (суффиксы) .jpeg, .jfif, .jpg, .JPG, или .JPE. Однако из них .jpg является самым популярным на всех платформах. MIME-типом является image/jpeg.

Фотография заката в формате JPEG с уменьшением степени сжатия слева направо

Алгоритм JPEG позволяет сжимать изображение как с потерями, так и без потерь (режим сжатия lossless JPEG). Поддерживаются изображения с линейным размером не более 65535 × 65535 пикселей.

Область применения

Алгоритм JPEG в наибольшей степени пригоден для сжатия фотографий и картин, содержащих реалистичные сцены с плавными переходами яркости и цвета. Наибольшее распространение JPEG получил в цифровой фотографии и для хранения и передачи изображений с использованием сети Интернет.

С другой стороны, JPEG малопригоден для сжатия чертежей, текстовой и знаковой графики, где резкий контраст между соседними пикселами приводит к появлению заметных артефактов. Такие изображения целесообразно сохранять в форматах без потерь, таких как TIFF, GIF или PNG.

JPEG (как и другие методы искажающего сжатия) не подходит для сжатия изображений при многоступенчатой обработке, так как искажения в изображения будут вноситься каждый раз при сохранении промежуточных результатов обработки.

JPEG не должен использоваться и в тех случаях, когда недопустимы даже минимальные потери, например, при сжатии астрономических или медицинских изображений. В таких случаях может быть рекомендован предусмотренный стандартом JPEG режим сжатия Lossless JPEG (который, однако, не поддерживается большинством популярных кодеков) или стандарт сжатия JPEG-LS.

Сжатие

При сжатии изображение преобразуется из цветового пространства RGB в YCbCr (YUV). Следует отметить, что стандарт JPEG (ISO/IEC 10918-1) никак не регламентирует выбор именно YCbCr, допуская и другие виды преобразования (например, с числом компонентов[2], отличным от трёх), и сжатие без преобразования (непосредственно в RGB), однако спецификация JFIF (JPEG File Interchange Format, предложенная в 1991 году специалистами компании C-Cube Microsystems, и ставшая в настоящее время стандартом де-факто) предполагает использование преобразования RGB->YCbCr.

После преобразования RGB->YCbCr для каналов изображения Cb и Cr, отвечающих за цвет, может выполняться «прореживание» (subsampling[3]), которое заключается в том, что каждому блоку из 4 пикселов (2х2) яркостного канала Y ставятся в соответствие усреднённые значения Cb и Cr (схема прореживания «4:2:0»[4]). При этом для каждого блока 2х2 вместо 12 значений (4 Y, 4 Cb и 4 Cr) используется всего 6 (4 Y и по одному усреднённому Cb и Cr). Если к качеству восстановленного после сжатия изображения предъявляются повышенные требования, прореживание может выполняться лишь в каком-то одном направлении — по вертикали (схема «4:4:0») или по горизонтали («4:2:2»), или не выполняться вовсе («4:4:4»).

Стандарт допускает также прореживание с усреднением Cb и Cr не для блока 2х2, а для четырёх расположенных последовательно (по вертикали или по горизонтали) пикселов, то есть для блоков 1х4, 4х1 (схема «4:1:1»), а также 2х4 и 4х2 (схема «4:1:0»). Допускается также использование различных типов прореживания для Cb и Cr, но на практике такие схемы применяются исключительно редко.

Далее яркостный компонент Y и отвечающие за цвет компоненты Cb и Cr разбиваются на блоки 8х8 пикселов. Каждый такой блок подвергается дискретному косинусному преобразованию (ДКП). Полученные коэффициенты ДКП квантуются (для Y, Cb и Cr в общем случае используются разные матрицы квантования) и пакуются с использованием кодирования серий и кодов Хаффмана. Стандарт JPEG допускает также использование значительно более эффективного арифметического кодирования, однако из-за патентных ограничений (патент на описанный в стандарте JPEG арифметический QM-кодер принадлежит IBM) на практике оно используется редко. В популярную библиотеку libjpeg последних версий включена поддержка арифметического кодирования, но с просмотром сжатых с использованием этого метода изображений могут возникнуть проблемы, поскольку многие программы просмотра не поддерживают их декодирование.

Матрицы, используемые для квантования коэффициентов ДКП, хранятся в заголовочной части JPEG-файла. Обычно они строятся так, что высокочастотные коэффициенты подвергаются более сильному квантованию, чем низкочастотные. Это приводит к огрублению мелких деталей на изображении. Чем выше степень сжатия, тем более сильному квантованию подвергаются все коэффициенты.

При сохранении изображения в JPEG-файле указывается параметр качества, задаваемый в некоторых условных единицах, например, от 1 до 100 или от 1 до 10. Большее число обычно соответствует лучшему качеству (и большему размеру сжатого файла). Однако даже при использовании наивысшего качества (соответствующего матрице квантования, состоящей из одних только единиц) восстановленное изображение не будет в точности совпадать с исходным, что связано как с конечной точностью выполнения ДКП, так и с необходимостью округления значений Y, Cb, Cr и коэффициентов ДКП до ближайшего целого. Режим сжатия Lossless JPEG, не использующий ДКП, обеспечивает точное совпадение восстановленного и исходного изображений, однако его малая эффективность (коэффициент сжатия редко превышает 2) и отсутствие поддержки со стороны разработчиков программного обеспечения не способствовали популярности Lossless JPEG.

Разновидности схем сжатия JPEG

Стандарт JPEG предусматривает два основных способа представления кодируемых данных.

Наиболее распространённым, поддерживаемым большинством доступных кодеков, является последовательное (sequential JPEG) представление данных, предполагающее последовательный обход кодируемого изображения поблочно слева направо, сверху вниз. Над каждым кодируемым блоком изображения осуществляются описанные выше операции, а результаты кодирования помещаются в выходной поток в виде единственного «скана», то есть массива кодированных данных, соответствующего последовательно пройденному («просканированному») изображению. Основной или «базовый» (baseline) режим кодирования допускает только такое представление. Расширенный (extended) режим наряду с последовательным допускает также прогрессивное (progressive JPEG) представление данных.

В случае progressive JPEG сжатые данные записываются в выходной поток в виде набора сканов, каждый из которых описывает изображение полностью с всё большей степенью детализации. Это достигается либо путём записи в каждый скан не полного набора коэффициентов ДКП, а лишь какой-то их части: сначала — низкочастотных, в следующих сканах — высокочастотных (метод «spectral selection» то есть спектральных выборок), либо путём последовательного, от скана к скану, уточнения коэффициентов ДКП (метод «successive approximation», то есть последовательных приближений). Такое прогрессивное представление данных оказывается особенно полезным при передаче сжатых изображений с использованием низкоскоростных каналов связи, поскольку позволяет получить представление обо всём изображении уже после передачи незначительной части JPEG-файла.

Обе описанные схемы (и sequential, и progressive JPEG) базируются на ДКП и принципиально не позволяют получить восстановленное изображение абсолютно идентичным исходному. Однако стандарт допускает также сжатие, не использующее ДКП, а построенное на основе линейного предсказателя (lossless, то есть «без потерь», JPEG), гарантирующее полное, бит-в-бит, совпадение исходного и восстановленного изображений. При этом коэффициент сжатия для фотографических изображений редко достигает 2, но гарантированное отсутствие искажений в некоторых случаях оказывается востребованным. Заметно большие степени сжатия могут быть получены при использовании не имеющего, несмотря на сходство в названиях, непосредственного отношения к стандарту JPEG ISO/IEC 10918-1 (ITU T.81 Recommendation) метода сжатия JPEG-LS, описываемого стандартом ISO/IEC 14495-1 (ITU T.87 Recommendation).

Синтаксис и структура

Файл JPEG содержит последовательность маркеров, каждый из которых начинается с байта 0xFF, свидетельствующего о начале маркера, и байта-идентификатора. Некоторые маркеры состоят только из этой пары байтов, другие же содержат дополнительные данные, состоящие из двухбайтового поля с длиной информационной части маркера (включая длину этого поля, но за вычетом двух байтов начала маркера то есть 0xFF и идентификатора) и собственно данных. Такая структура файла позволяет быстро отыскать маркер с необходимыми данными (например, с длиной строки, числом строк и числом цветовых компонентов сжатого изображения).

Основные маркеры JPEG[5]
Маркер Байты Длина Назначение Комментарии
SOI 0xFFD8 нет Начало изображения
SOF0 0xFFC0 переменный размер Начало фрейма (базовый, ДКП) Показывает что изображение кодировалось в базовом режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения (двухбайтовые поля со смещением соответственно 5 и 7 относительно начала маркера), количество компонентов (байтовое поле со смещением 8 относительно начала маркера), число бит на компонент (байтовое поле со смещением 4 относительно начала маркера), а также соотношение компонентов (например, 4:2:0).
SOF1 0xFFC1 переменный размер Начало фрейма (расширенный, ДКП, код Хаффмана) Показывает что изображение кодировалось в расширенном (extended) режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения, количество компонентов, число бит на компонент, а также соотношение компонентов (например, 4:2:0).
SOF2 0xFFC2 переменный размер Начало фрейма (прогрессивный, ДКП, код Хаффмана) Показывает что изображение кодировалось в прогрессивном режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения, количество компонентов, число бит на компонент, а также соотношение компонентов (например, 4:2:0).
DHT 0xFFC4 переменный размер Содержит таблицы Хаффмана Задает одну или более таблиц Хаффмана.
DQT 0xFFDB переменный размер Содержит таблицы квантования Задает одну или более таблиц квантования.
DRI 0xFFDD 4 байта Указывает интервал повторений Задает интервал между маркерами RST n в макроблоках.
SOS 0xFFDA переменный размер Начало сканирования Начало первого или очередного скана изображения с направлением обхода слева направо сверху вниз. Если использовался базовый режим кодирования, используется один скан. При использовании прогрессивных режимов используется несколько сканов. Маркер SOS является разделяющим между информативной (заголовком) и закодированной (собственно сжатыми данными) частями изображения.
RSTn 0xFFDn нет Перезапуск Вставляется в каждом r макроблоке, где r — интервал перезапуска DRI маркера. Не используется при отсутствии DRI маркера. n, младшие 3 бита маркера кода, циклы от 0 до 7.
APPn 0xFFEn переменный размер Задаётся приложением Например, в EXIF JPEG-файла используется маркер APP1 для хранения метаданных, расположеных в структуре, основанной на TIFF.
COM 0xFFFE переменный размер Комментарий Содержит текст комментария.
EOI 0xFFD9 нет Конец закодированной части изображения.

Достоинства и недостатки

К недостаткам сжатия по стандарту JPEG следует отнести появление на восстановленных изображениях при высоких степенях сжатия характерных артефактов: изображение рассыпается на блоки размером 8×8 пикселов (этот эффект особенно заметен на областях изображения с плавными изменениями яркости), в областях с высокой пространственной частотой (например, на контрастных контурах и границах изображения) возникают артефакты в виде шумовых ореолов. Следует отметить, что стандарт JPEG (ISO/IEC 10918-1, Annex K, п. K.8) предусматривает использование специальных фильтров для подавления блоковых артефактов, но на практике подобные фильтры, несмотря на их высокую эффективность, практически не используются. Однако, несмотря на недостатки, JPEG получил очень широкое распространение из-за достаточно высокой (относительно существовавших во время его появления альтернатив) степени сжатия, поддержке сжатия полноцветных изображений и относительно невысокой вычислительной сложности.

Производительность сжатия по стандарту JPEG

Для ускорения процесса сжатия по стандарту JPEG традиционно используется распараллеливание вычислений, в частности — при вычислении ДКП. Исторически одна из первых попыток ускорить процесс сжатия с использованием такого подхода описана в опубликованной в 1993 г. статье Касперовича и Бабкина [6], в которой предлагалась оригинальная аппроксимация ДКП, делающая возможным эффективное распараллеливание вычислений с использованием 32-разрядных регистров общего назначения процессоров Intel 80386. Появившиеся позже более производительные вычислительные схемы использовали SIMD-расширения набора инструкций процессоров архитектуры x86. Значительно лучших результатов позволяют добиться схемы, использующие вычислительные возможности графических ускорителей (технологии NVIDIA CUDA и AMD FireStream) для организации параллельных вычислений не только ДКП, но и других этапов сжатия JPEG (преобразование цветовых пространств, run-level, статистическое кодирование и т.п.), причём для каждого блока 8х8 кодируемого или декодируемого изображения. В статье [7] была впервые[источник?] представлена реализация распараллеливания всех стадий алгоритма JPEG по технологии CUDA, что значительно ускорило производительность сжатия и декодирования по стандарту JPEG.

Интересные факты

В 2010 году ученые из проекта PLANETS поместили инструкции по чтению формата JPEG в специальную капсулу, которую поместили в специальный бункер в швейцарских Альпах. Сделано это было с целью сохранения для потомков информации о популярных в начале XXI века цифровых форматах.[8]

См. также

Примечания

Ссылки

JPEG — Википедия

JPEG (произносится «джейпег»[2], англ. Joint Photographic Experts Group, по названию организации-разработчика) — один из популярных растровых графических форматов, применяемый для хранения фотоизображений и подобных им изображений. Файлы, содержащие данные JPEG, обычно имеют расширения (суффиксы) .jpg, .jfif, .jpe или .jpeg. Однако из них .jpg является самым популярным на всех платформах. MIME-типом является image/jpeg.

Фотография заката в формате JPEG с уменьшением степени сжатия слева направо

Алгоритм JPEG позволяет сжимать изображение как с потерями, так и без потерь (режим сжатия lossless JPEG). Поддерживаются изображения с линейным размером не более 65535 × 65535 пикселей.

В 2010 году, с целью сохранения для потомков информации о популярных в начале XXI века цифровых форматах, учёные из проекта PLANETS заложили инструкции по чтению формата JPEG в специальную капсулу, которую поместили в специальное хранилище в швейцарских Альпах[3][4].

Область применения

Алгоритм JPEG в наибольшей степени пригоден для сжатия фотографий и картин, содержащих реалистичные сцены с плавными переходами яркости и цвета. Наибольшее распространение JPEG получил в цифровой фотографии и для хранения и передачи изображений с использованием сети Интернет.

Формат JPEG в режиме сжатия с потерями малопригоден для сжатия чертежей, текстовой и знаковой графики, где резкий контраст между соседними пикселями приводит к появлению заметных артефактов. Такие изображения целесообразно сохранять в форматах без потерь, таких как JPEG-LS, TIFF, GIF, PNG или использовать режим сжатия Lossless JPEG.

JPEG (как и другие форматы сжатия с потерями) не подходит для сжатия изображений при многоэтапной обработке, так как искажения в изображения будут вноситься каждый раз при сохранении промежуточных результатов обработки.

JPEG не должен использоваться и в тех случаях, когда недопустимы даже минимальные потери, например, при сжатии астрономических или медицинских изображений. В таких случаях может быть рекомендован предусмотренный стандартом JPEG режим сжатия Lossless JPEG (который, однако, не поддерживается большинством популярных кодеков) или стандарт сжатия JPEG-LS.

Сжатие

При сжатии изображение преобразуется из цветового пространства RGB в YCbCr. Следует отметить, что стандарт JPEG (ISO/IEC 10918-1) никак не регламентирует выбор именно YCbCr, допуская и другие виды преобразования (например, с числом компонентов[5], отличным от трёх), и сжатие без преобразования (непосредственно в RGB), однако спецификация JFIF (JPEG File Interchange Format, предложенная в 1991 году специалистами компании C-Cube Microsystems, и ставшая в настоящее время стандартом де-факто) предполагает использование преобразования RGB->YCbCr.

После преобразования RGB->YCbCr для каналов изображения Cb и Cr, отвечающих за цвет, может выполняться «прореживание» (subsampling[6]), которое заключается в том, что каждому блоку из 4 пикселей (2х2) яркостного канала Y ставятся в соответствие усреднённые значения Cb и Cr (схема прореживания «4:2:0»[7]). При этом для каждого блока 2х2 вместо 12 значений (4 Y, 4 Cb и 4 Cr) используется всего 6 (4 Y и по одному усреднённому Cb и Cr). Если к качеству восстановленного после сжатия изображения предъявляются повышенные требования, прореживание может выполняться лишь в каком-то одном направлении — по вертикали (схема «4:4:0») или по горизонтали («4:2:2»), или не выполняться вовсе («4:4:4»).

Пример изображения в формате jpg.

Стандарт допускает также прореживание с усреднением Cb и Cr не для блока 2х2, а для четырёх расположенных последовательно (по вертикали или по горизонтали) пикселей, то есть для блоков 1х4, 4х1 (схема «4:1:1»), а также 2х4 и 4х2 (схема «4:1:0»). Допускается также использование различных типов прореживания для Cb и Cr, но на практике такие схемы применяются исключительно редко.

Далее яркостный компонент Y и отвечающие за цвет компоненты Cb и Cr разбиваются на блоки 8х8 пикселей. Каждый такой блок подвергается дискретному косинусному преобразованию (ДКП). Полученные коэффициенты ДКП квантуются (для Y, Cb и Cr в общем случае используются разные матрицы квантования) и пакуются с использованием кодирования серий и кодов Хаффмана. Стандарт JPEG допускает также использование значительно более эффективного арифметического кодирования, однако из-за патентных ограничений (патент на описанный в стандарте JPEG арифметический QM-кодер принадлежит IBM) на практике оно используется редко. В популярную библиотеку libjpeg последних версий включена поддержка арифметического кодирования, но с просмотром сжатых с использованием этого метода изображений могут возникнуть проблемы, поскольку многие программы просмотра не поддерживают их декодирование.

Матрицы, используемые для квантования коэффициентов ДКП, хранятся в заголовочной части JPEG-файла. Обычно они строятся так, что высокочастотные коэффициенты подвергаются более сильному квантованию, чем низкочастотные. Это приводит к огрублению мелких деталей на изображении. Чем выше степень сжатия, тем более сильному квантованию подвергаются все коэффициенты.

При сохранении изображения в JPEG-файле указывается параметр качества, задаваемый в некоторых условных единицах, например, от 1 до 100 или от 1 до 10. Большее число обычно соответствует лучшему качеству (и большему размеру сжатого файла). Однако даже при использовании наивысшего качества (соответствующего матрице квантования, состоящей из одних только единиц) восстановленное изображение не будет в точности совпадать с исходным, что связано как с конечной точностью выполнения ДКП, так и с необходимостью округления значений Y, Cb, Cr и коэффициентов ДКП до ближайшего целого. Режим сжатия Lossless JPEG, не использующий ДКП, обеспечивает точное совпадение восстановленного и исходного изображений, однако его малая эффективность (коэффициент сжатия редко превышает 2) и отсутствие поддержки со стороны разработчиков программного обеспечения не способствовали популярности Lossless JPEG.

Разновидности схем сжатия JPEG

Стандарт JPEG предусматривает два основных способа представления кодируемых данных.

Наиболее распространённым, поддерживаемым большинством доступных кодеков, является последовательное (sequential JPEG) представление данных, предполагающее последовательный обход кодируемого изображения разрядностью 8 бит на компоненту (или 8 бит на пиксель для чёрно-белых полутоновых изображений) поблочно слева направо, сверху вниз. Над каждым кодируемым блоком изображения осуществляются описанные выше операции, а результаты кодирования помещаются в выходной поток в виде единственного «скана», то есть массива кодированных данных, соответствующего последовательно пройденному («просканированному») изображению. Основной или «базовый» (baseline) режим кодирования допускает только такое представление (и хаффмановское кодирование квантованных коэффициентов ДКП). Расширенный (extended) режим наряду с последовательным допускает также прогрессивное (progressive JPEG) представление данных, кодирование изображений разрядностью 12 бит на компоненту/пиксель (сжатие таких изображений спецификацией JFIF не поддерживается) и арифметическое кодирование квантованных коэффициентов ДКП.

В случае progressive JPEG сжатые данные записываются в выходной поток в виде набора сканов, каждый из которых описывает изображение полностью с всё большей степенью детализации. Это достигается либо путём записи в каждый скан не полного набора коэффициентов ДКП, а лишь какой-то их части: сначала — низкочастотных, в следующих сканах — высокочастотных (метод «spectral selection» то есть спектральных выборок), либо путём последовательного, от скана к скану, уточнения коэффициентов ДКП (метод «successive approximation», то есть последовательных приближений). Такое прогрессивное представление данных оказывается особенно полезным при передаче сжатых изображений с использованием низкоскоростных каналов связи, поскольку позволяет получить представление обо всём изображении уже после передачи незначительной части JPEG-файла.

Обе описанные схемы (и sequential, и progressive JPEG) базируются на ДКП и принципиально не позволяют получить восстановленное изображение абсолютно идентичным исходному. Однако стандарт допускает также сжатие, не использующее ДКП, а построенное на основе линейного предсказателя (lossless, то есть «без потерь», JPEG), гарантирующее полное, бит-в-бит, совпадение исходного и восстановленного изображений. При этом коэффициент сжатия для фотографических изображений редко достигает 2, но гарантированное отсутствие искажений в некоторых случаях оказывается востребованным. Заметно большие степени сжатия могут быть получены при использовании не имеющего, несмотря на сходство в названиях, непосредственного отношения к стандарту JPEG ISO/IEC 10918-1 (ITU T.81 Recommendation) метода сжатия JPEG-LS, описываемого стандартом ISO/IEC 14495-1 (ITU T.87 Recommendation).

Синтаксис и структура

Файл JPEG содержит последовательность маркеров, каждый из которых начинается с байта 0xFF, свидетельствующего о начале маркера, и байта-идентификатора. Некоторые маркеры состоят только из этой пары байтов, другие же содержат дополнительные данные, состоящие из двухбайтового поля с длиной информационной части маркера (включая длину этого поля, но за вычетом двух байтов начала маркера, то есть 0xFF и идентификатора) и собственно данных. Такая структура файла позволяет быстро отыскать маркер с необходимыми данными (например, с длиной строки, числом строк и числом цветовых компонентов сжатого изображения).

Основные маркеры JPEG[8]
Маркер Байты Длина Назначение Комментарии
SOI 0xFFD8 нет Начало изображения
SOF0 0xFFC0 переменный размер Начало фрейма (базовый, ДКП) Показывает, что изображение кодировалось в базовом режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения (двухбайтовые поля со смещением соответственно 5 и 7 относительно начала маркера), количество компонентов (байтовое поле со смещением 9 относительно начала маркера), число бит на компонент — строго 8 (байтовое поле со смещением 4 относительно начала маркера), а также соотношение компонентов (например, 4:2:0).
SOF1 0xFFC1 переменный размер Начало фрейма (расширенный, ДКП, код Хаффмана) Показывает, что изображение кодировалось в расширенном (extended) режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения, количество компонентов, число бит на компонент (8 или 12), а также соотношение компонентов (например, 4:2:0).
SOF2 0xFFC2 переменный размер Начало фрейма (прогрессивный, ДКП, код Хаффмана) Показывает, что изображение кодировалось в прогрессивном режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения, количество компонентов, число бит на компонент (8 или 12), а также соотношение компонентов (например, 4:2:0).
DHT 0xFFC4 переменный размер Содержит таблицы Хаффмана Задает одну или более таблиц Хаффмана.
DQT 0xFFDB переменный размер Содержит таблицы квантования Задает одну или более таблиц квантования.
DRI 0xFFDD 4 байта Указывает длину рестарт-интервала Задает интервал между маркерами RST n в макроблоках. При отсутствии DRI появление в потоке кодированных данных маркеров RSTn недопустимо и считается ошибкой. Если при кодировании маркеры RST n не применяются, маркер DRI либо не используется вовсе, либо интервал повторений в нём указывается равным 0.
SOS 0xFFDA переменный размер Начало сканирования Начало первого или очередного скана изображения с направлением обхода слева направо сверху вниз. Если использовался базовый режим кодирования, используется один скан. При использовании прогрессивных режимов используется несколько сканов. Маркер SOS является разделяющим между информативной (заголовком) и закодированной (собственно сжатыми данными) частями изображения.
RSTn 0xFFDn нет Перезапуск Маркеры перезапуска используются для сегментирования кодированных энтропийным кодером данных. В каждом сегменте данные декодируются независимо, что позволяет распараллелить процедуру декодирования. При повреждении кодированных данных в процессе передачи или хранения JPEG-файла использование маркеров перезапуска позволяет ограничить потери (макроблоки из неповреждённых сегментов будут восстановлены правильно). Вставляется в каждом r-м макроблоке, где r — интервал перезапуска DRI маркера. Не используется при отсутствии DRI маркера. n, младшие 3 бита маркера кода, циклы от 0 до 7.
APPn 0xFFEn переменный размер Задаётся приложением Например, в EXIF JPEG-файла используется маркер APP1 для хранения метаданных, расположенных в структуре, основанной на TIFF.
COM 0xFFFE переменный размер Комментарий Содержит текст комментария.
EOI 0xFFD9 нет Конец закодированной части изображения.

Достоинства и недостатки

К недостаткам сжатия по стандарту JPEG следует отнести появление на восстановленных изображениях при высоких степенях сжатия характерных артефактов: изображение рассыпается на блоки размером 8×8 пикселей (этот эффект особенно заметен на областях изображения с плавными изменениями яркости), в областях с высокой пространственной частотой (например, на контрастных контурах и границах изображения) возникают артефакты в виде шумовых ореолов. Следует отметить, что стандарт JPEG (ISO/IEC 10918-1, Annex K, п. K.8) предусматривает использование специальных фильтров для подавления блоковых артефактов, но на практике подобные фильтры, несмотря на их высокую эффективность, практически не используются.

Однако, несмотря на недостатки, JPEG получил очень широкое распространение из-за достаточно высокой (относительно существовавших во время его появления альтернатив) степени сжатия, поддержке сжатия полноцветных изображений и относительно невысокой вычислительной сложности.

Производительность сжатия по стандарту JPEG

Для ускорения процесса сжатия по стандарту JPEG традиционно используется распараллеливание вычислений, в частности — при вычислении ДКП. Исторически одна из первых попыток ускорить процесс сжатия с использованием такого подхода описана в опубликованной в 1993 году статье Касперовича и Бабкина[9], в которой предлагалась оригинальная аппроксимация ДКП, делающая возможным эффективное распараллеливание вычислений с использованием 32-разрядных регистров общего назначения процессоров Intel 80386. Появившиеся позже более производительные вычислительные схемы использовали SIMD-расширения набора инструкций процессоров архитектуры x86. Значительно лучших результатов позволяют добиться схемы, использующие вычислительные возможности графических ускорителей (технологии NVIDIA CUDA и AMD FireStream) для организации параллельных вычислений не только ДКП, но и других этапов сжатия JPEG (преобразование цветовых пространств, run-level, статистическое кодирование и т. п.), причём для каждого блока 8х8 кодируемого или декодируемого изображения. В статье[10] была представлена реализация распараллеливания всех стадий алгоритма JPEG по технологии CUDA, что значительно ускорило производительность сжатия и декодирования по стандарту JPEG.

См. также

Примечания

Ссылки

Как конвертировать изображения в JPG формат

В настоящее время формат JPG имеет широкое распространение, пользуется популярностью и прост в обращении. Файлы в таком формате имеют маленький вес, с легкостью открываются в любой программе для просмотра и редактирования изображений и без проблем отправляются по электронной почте.

С другой стороны, JPG не рекомендуется для сжатия чертежей, текстовой и знаковой графики. Так как после сжатия появляются заметные цифровые артефакты. Такие изображения лучше сохранять в таких форматах, как PNG, GIF, TIFF. С помощью Фотоконвертера вы всегда можете быстро и бесплатно конвертировать в JPG любые графические форматы.

Вот несколько советов для успешной конвертации:

Скачайте и установите Фотоконвертер.

Выберите файлы для конвертации. Если у вас есть целый список изображений которые вы хотите сохранить в jpg, используйте пакетное преобразование. С помощью него вы cможете за раз конвертировать сразу 100, а то и 1000 фотографий.

Выберите инструменты для редактирования. С помощью данной опции вы сможете (обрезать, повернуть ваше изображение, настроить яркость, контраст и многое другое).

Выберите формат для конвертации, в нашем случае это JPG.

Осталось нажать кнопку Старт и через несколько секунд вы получите ваши файлы преобразованные в JPG формат.

Установить Фотоконвертер

 

Онлайн конвертация

Некоторые возможности Фотоконвертера можно попробовать онлайн. Выберите файлы или ZIP архивы для конвертации:

 

Интерфейс командной строки

Профессиональные пользователи могут использовать командную строку для конвертации и редактирования в ручном или автоматическом режиме. За дополнительными консультациями по использованию cmd интерфейса обращайтесь в службу поддержки пользователей.

Рассказать друзьям

Описание формата JPEG — Бесплатный онлайн-конвертер

В интернете популярна байка, что ничего в нашем мире не изменилось со времен Древнего Египта – люди все так же пишут на стенах и любят котиков. Так вот, фотографии милых домашних питомцев – это и есть JPEG, растровый формат графики, специально разработанный для сохранения изображений в тех случаях, когда требуется естественность и реалистичность.
Сокращение JPEG отражает название рабочей группы создателей этого формата – Joint Photographic Experts Group – объединенная группа экспертов-разработчиков. Вот как они себя пафосно называют – группа экспертов.
На самом деле разработка оказалась очень даже удачной и сегодня формат JPEG является наиболее популярным, часто применяемый и всем известным.

Сфера применения JPEG

Сфера применения JPEG

Больше всего формат полюбился фотографам и веб-разработчикам. И вот почему:

  • Достигается действительно высоко реалистическая фиксация картин природы, животных, портретов людей при небольшом объеме файла, благодаря алгоритмам сжатия.
  • Часто JPEG используется для создания цифровых библиотек с целью хранения фотографий

Одним из достоинств формата является возможность сжатия графических файлов в достаточно широком диапазоне, что достигается путем задания уровня сжатия (диапазон настройки от 25 до 100%, при этом 100% — сжатие без потерь) Например, цифровая фотография в формате RAW может весить 2-3 десятка мегабайт, а то и больше, что очень много для хранения большого количества изображений и слишком «тяжело», чтобы опубликовать такое изображение на странице сайта или блога. Парочка таких фотографий и пользователь будет вынужден часами ждать загрузки сайта. Кроме этого вероятность отображения такой фотографии стремится к нулю, так как не все приложения и браузеры смогут отобразить фотографии RAW формате.
Поэтому основная часть фотографий конвертируется или создается непосредственно в формате JPEG. На нашем сайте вы сможете бесплатно сконвертировать ваши изображения в JPEG с различными настройками, при этом вы можете подобрать необходимые вам настройки, такие как алгоритм сжатия и качество изображения, тем самым вы можете значительно уменьшить размер файла или сохранить качественную картинку, при минимально возможном размере файла.

Так же вы можете уменьшить разрешение изображения, если это изображение в несколько мегапикселей, при этом на экране компьютера, тем более мобильного устройства, пользователь практически не увидит серьезного снижения качества графики. Тем самым вы значительно сократите размер изображения, без видимых потерь.

В какой программе можно открыть и отредактировать фотографии JPEG?

Как это обычно бывает – в поисках совершенства разработчики провели множество экспериментов и сегодня существует приличное многообразие видов, подвидов и мутаций базового формата JPEG. Расширения файлов могут сильно различаться.

Однако беспокоиться не нужно – все приличные программы для редактирования фотографий отлично понимают все эти версии формата и с успехом могут с ними работать.
Для профессионалов и продвинутых пользователей хороший графический редактор всегда имеет специальный интерфейс для тонкой настройки цветовых преобразований и способа сжатия.

Особенности сжатия формата JPEG

Технологию сжатия графических файлов можно упрощенно описать примерно, как это происходило в старинных ленточных видеомагнитофонах.

  • При пропадании данных о строке, система вычисляет средние параметры двух соседних строчек изображения и таким образом происходит восстановление полноты картинки на экране.

Что-то вроде этого, только по более сложным алгоритмам, происходит и в процессе сжатия файлов фотографий. Особым преимуществом JPEG стало то, что процесс сжатия производится очень быстро и фотографу не придется долго ждать окончания обработки изображений. Это важно при профессиональной работе фотографа либо контент-менеджера, администрирующего многостраничные интернет-порталы.
В зависимости от требований по качеству и размеру фотографий можно задавать степень сжатия в широких пределах.
Однако следует понимать и то, что сжатое изображение неизбежно будет иметь какие-то потери и восстановить исходное качество картинки не удастся.
Особенно сильно теряется качество при многократной обработке графических файлов. Такое чрезмерное сжатие нередко приводит к появлению ореолов, ухудшению резкости на отдельных участках фотографии.
В некоторых сферах малейшие искажения изображения недопустимы и могут привести к негативным последствиям.
Например, в медицине, чтобы врачи смогли делать безошибочную диагностику, фотография исследуемых органов должна в точности соответствовать реальной клинической картине. Получается, что от формата графики может зависеть жизнь и здоровье людей.
На такие случаи существуют форматы изображений со сжатием без потерь.

  • Lossless JPEG
  • JPEG 2000
  • JPEG LS

Просто в процессе редактирования изображений следует помнить о таких особенностях формата и выбирать подходы к обработке графики в зависимости от стоящей задачи.

Недостатки формата JPEG

когда не стоит использовать JPEG

И на солнце есть пятна, а JPEG не всегда является лучшим выбором.
Например, этот формат очень хорошо отображает многоцветные картины с плавными переходами оттенков. Но если вам требуется получить очень четкую инженерную схему, карту местности, другое изображение, где критически важна читаемость всех мелких деталей – то формат JPEG может не обеспечить требуемых параметров.
Для изображений, где необходима предельная детализация (и не обязательна плавность цветовых градаций) лучше подходят форматы GIF и PNG.

Отправить ответ

avatar
  Подписаться  
Уведомление о